Header logo is


2010


Thumb xl screen shot 2018 02 03 at 7.21.10 pm
Roombots: Reconfigurable Robots for Adaptive Furniture

Spröwitz, A., Pouya, S., Bonardi, S., van den Kieboom, J., Möckel, R., Billard, A., Dillenbourg, P., Ijspeert, A.

Computational Intelligence Magazine, IEEE, 5(3):20-32, 2010 (article)

Abstract
Imagine a world in which our furniture moves around like legged robots, interacts with us, and changes shape and function during the day according to our needs. This is the long term vision we have in the Roombots project. To work towards this dream, we are developing modular robotic modules that have rotational degrees of freedom for locomotion as well as active connection mechanisms for runtime reconfiguration. A piece of furniture, e.g. a stool, will thus be composed of several modules that activate their rotational joints together to implement locomotor gaits, and will be able to change shape, e.g. transforming into a chair, by sequences of attachments and detachments of modules. In this article, we firstly present the project and the hardware we are currently developing. We explore how reconfiguration from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using metamodules-two Roombots modules connected serially-that use broadcast signals and connections to a structured ground to collectively build desired structures without the need of a centralized planner. We then present how locomotion controllers can be implemented in a distributed system of coupled oscillators-one per degree of freedom-similarly to the concept of central pattern generators (CPGs) found in the spinal cord of vertebrate animals. The CPGs are based on coupled phase oscillators to ensure synchronized behavior and have different output filters to allow switching between oscillations and rotations. A stochastic optimization algorithm is used to explore optimal CPG configurations for different simulated Roombots structures.

dlg

DOI [BibTex]

2010


DOI [BibTex]

2006


Thumb xl screen shot 2018 02 03 at 7.14.23 pm
Passive compliance for a RC servo-controlled bouncing robot

Meyer, F., Spröwitz, A., Berthouze, L.

Advanced Robotics, 20(8):953-961, 2006 (article)

Abstract
A novel and low-cost passively compliant mechanism is described that can be used with RC servos to actuate legged robots in tasks involving high dynamic loads such as bouncing. Compliance is achieved by combining visco-elastic material and metal parts. Joint response to dynamic loads is evaluated using real-world experiments and force data are obtained from a Lagrangian analysis of the system. The experimental results demonstrate the applicative potential of this mechanism.

dlg

DOI [BibTex]

2006


DOI [BibTex]