pn
Tronarp, F., Kersting, H., Särkkä, S., Hennig, P.
Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective
ArXiv preprint 2018, arXiv:1810.03440 [stat.ME], October 2018 (article)
pn
Kajihara, T., Kanagawa, M., Yamazaki, K., Fukumizu, K.
Kernel Recursive ABC: Point Estimation with Intractable Likelihood
Proceedings of the 35th International Conference on Machine Learning, pages: 2405-2414, PMLR, July 2018 (conference)
pn
Kersting, H., Sullivan, T. J., Hennig, P.
Convergence Rates of Gaussian ODE Filters
arXiv preprint 2018, arXiv:1807.09737 [math.NA], July 2018 (article)
dlg
Sproewitz, A., Tuleu, A., Ajallooeian, M., Vespignani, M., Moeckel, R., Eckert, P., D’Haene, M., Degrave, J., Nordmann, A., Schrauwen, B., Steil, J., Ijspeert, A. J.
Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs
Frontiers in Robotics and AI, 5(67), June 2018, arXiv: 1803.06259 (article)
dlg
Heim, S., Sproewitz, A.
Learning from Outside the Viability Kernel: Why we Should Build Robots that can Fail with Grace
Proceedings of SIMPAR 2018, pages: 55-61, IEEE, 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), May 2018 (conference)
dlg
Drama, O.
Impact of Trunk Orientation for Dynamic Bipedal Locomotion
Dynamic Walking Conference, May 2018 (talk)
dlg
Heim, S., Ruppert, F., Sarvestani, A., Sproewitz, A.
Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in Hardware
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, pages: 5076-5081, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)
pn
Kanagawa, M., Hennig, P., Sejdinovic, D., Sriperumbudur, B. K.
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 (article)
dlg
Richter, J.
Untersuchung und Charakterisierung von Teilelementen der Modifikation im Lumbosacralbereich von Vögeln
Hochschule Harz, 2018 (thesis)
pn
Balles, L., Hennig, P.
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients
In Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 (inproceedings) Accepted
ei
pn
Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference
Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 (article)
pn
Nishiyama, Y., Kanagawa, M., Gretton, A., Fukumizu, K.
Model-based Kernel Sum Rule: Kernel Bayesian Inference with Probabilistic Models
Arxiv e-prints, arXiv:1409.5178v2 [stat.ML], 2018 (article)
pn
Schober, M., Särkkä, S., Philipp Hennig,
A probabilistic model for the numerical solution of initial value problems
Statistics and Computing, Springer US, 2018 (article)
pn
Wahl, N., Hennig, P., Wieser, H., Bangert, M.
Analytical incorporation of fractionation effects in probabilistic treatment planning for intensity-modulated proton therapy
Medical Physics, 2018 (article)
ei
pn
Mahsereci, M.
Probabilistic Approaches to Stochastic Optimization
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)
ei
pn
slt
Garreau, D., Jitkrittum, W., Kanagawa, M.
Large sample analysis of the median heuristic
2018 (misc) In preparation
ei
pn
Schober, M.
Probabilistic Ordinary Differential Equation Solvers — Theory and Applications
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)
ei
pn
Schober, M.
Camera-specific Image Denoising
Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)
ei
ps
pn
Hennig, P., Kiefel, M.
Quasi-Newton Methods: A New Direction
Journal of Machine Learning Research, 14(1):843-865, March 2013 (article)
ei
pn
Lopez-Paz, D., Hennig, P., Schölkopf, B.
The Randomized Dependence Coefficient
In Advances in Neural Information Processing Systems 26, pages: 1-9, (Editors: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)
ei
pn
Hennig, P.
Fast Probabilistic Optimization from Noisy Gradients
In Proceedings of The 30th International Conference on Machine Learning, JMLR W&CP 28(1), pages: 62–70, (Editors: S Dasgupta and D McAllester), ICML, 2013 (inproceedings)
ei
pn
Klenske, E., Zeilinger, M., Schölkopf, B., Hennig, P.
Nonparametric dynamics estimation for time periodic systems
In Proceedings of the 51st Annual Allerton Conference on Communication, Control, and Computing, pages: 486-493 , 2013 (inproceedings)
ei
pn
Lopez-Paz, D., Hennig, P., Schölkopf, B.
The Randomized Dependence Coefficient
Neural Information Processing Systems (NIPS), 2013 (poster)
ei
pn
Bangert, M., Hennig, P., Oelfke, U.
Analytical probabilistic modeling for radiation therapy treatment planning
Physics in Medicine and Biology, 58(16):5401-5419, 2013 (article)
ei
pn
Bangert, M., Hennig, P., Oelfke, U.
Analytical probabilistic proton dose calculation and range uncertainties
In 17th International Conference on the Use of Computers in Radiation Therapy, pages: 6-11, (Editors: A. Haworth and T. Kron), ICCR, 2013 (inproceedings)
ei
pn
Hennig, P.
Animating Samples from Gaussian Distributions
(8), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2013 (techreport)