Header logo is


2014


Thumb xl ps page panel
Probabilistic Progress Bars

Kiefel, M., Schuler, C., Hennig, P.

In Conference on Pattern Recognition (GCPR), 8753, pages: 331-341, Lecture Notes in Computer Science, (Editors: Jiang, X., Hornegger, J., and Koch, R.), Springer, GCPR, September 2014 (inproceedings)

Abstract
Predicting the time at which the integral over a stochastic process reaches a target level is a value of interest in many applications. Often, such computations have to be made at low cost, in real time. As an intuitive example that captures many features of this problem class, we choose progress bars, a ubiquitous element of computer user interfaces. These predictors are usually based on simple point estimators, with no error modelling. This leads to fluctuating behaviour confusing to the user. It also does not provide a distribution prediction (risk values), which are crucial for many other application areas. We construct and empirically evaluate a fast, constant cost algorithm using a Gauss-Markov process model which provides more information to the user.

ei ps pn

website+code pdf DOI [BibTex]

2014


website+code pdf DOI [BibTex]


Thumb xl aistats2014
Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics

Hennig, P., Hauberg, S.

In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, 33, pages: 347-355, JMLR: Workshop and Conference Proceedings, (Editors: S Kaski and J Corander), Microtome Publishing, Brookline, MA, AISTATS, April 2014 (inproceedings)

Abstract
We study a probabilistic numerical method for the solution of both boundary and initial value problems that returns a joint Gaussian process posterior over the solution. Such methods have concrete value in the statistics on Riemannian manifolds, where non-analytic ordinary differential equations are involved in virtually all computations. The probabilistic formulation permits marginalising the uncertainty of the numerical solution such that statistics are less sensitive to inaccuracies. This leads to new Riemannian algorithms for mean value computations and principal geodesic analysis. Marginalisation also means results can be less precise than point estimates, enabling a noticeable speed-up over the state of the art. Our approach is an argument for a wider point that uncertainty caused by numerical calculations should be tracked throughout the pipeline of machine learning algorithms.

ei ps pn

pdf Youtube Supplements Project page link (url) [BibTex]

pdf Youtube Supplements Project page link (url) [BibTex]


no image
Local Gaussian Regression

Meier, F., Hennig, P., Schaal, S.

arXiv preprint, March 2014, clmc (misc)

Abstract
Abstract: Locally weighted regression was created as a nonparametric learning method that is computationally efficient, can learn from very large amounts of data and add data incrementally. An interesting feature of locally weighted regression is that it can work with ...

am pn

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Probabilistic ODE Solvers with Runge-Kutta Means

Schober, M., Duvenaud, D., Hennig, P.

In Advances in Neural Information Processing Systems 27, pages: 739-747, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)

ei pn

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Active Learning of Linear Embeddings for Gaussian Processes

Garnett, R., Osborne, M., Hennig, P.

In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, pages: 230-239, (Editors: NL Zhang and J Tian), AUAI Press , Corvallis, Oregon, UAI2014, 2014, another link: http://arxiv.org/abs/1310.6740 (inproceedings)

ei pn

PDF Web [BibTex]

PDF Web [BibTex]


no image
Probabilistic Shortest Path Tractography in DTI Using Gaussian Process ODE Solvers

Schober, M., Kasenburg, N., Feragen, A., Hennig, P., Hauberg, S.

In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, Lecture Notes in Computer Science Vol. 8675, pages: 265-272, (Editors: P. Golland, N. Hata, C. Barillot, J. Hornegger and R. Howe), Springer, Heidelberg, MICCAI, 2014 (inproceedings)

ei pn

DOI [BibTex]

DOI [BibTex]


no image
Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature

Gunter, T., Osborne, M., Garnett, R., Hennig, P., Roberts, S.

In Advances in Neural Information Processing Systems 27, pages: 2789-2797, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)

ei pn

Web link (url) [BibTex]

Web link (url) [BibTex]


Thumb xl screen shot 2018 02 03 at 11.45.27 am
Roombots: A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot

Spröwitz, A., Moeckel, R., Vespignani, M., Bonardi, S., Ijspeert, A. J.

{Robotics and Autonomous Systems}, 62(7):1016-1033, Elsevier, Amsterdam, 2014 (article)

Abstract
In this work we provide hands-on experience on designing and testing a self-reconfiguring modular robotic system, Roombots (RB), to be used among others for adaptive furniture. In the long term, we envision that RB can be used to create sets of furniture, such as stools, chairs and tables that can move in their environment and that change shape and functionality during the day. In this article, we present the first, incremental results towards that long term vision. We demonstrate locomotion and reconfiguration of single and metamodule RB over 3D surfaces, in a structured environment equipped with embedded connection ports. RB assemblies can move around in non-structured environments, by using rotational or wheel-like locomotion. We show a proof of concept for transferring a Roombots metamodule (two in-series coupled RB modules) from the non-structured environment back into the structured grid, by aligning the RB metamodule in an entrapment mechanism. Finally, we analyze the remaining challenges to master the full Roombots scenario, and discuss the impact on future Roombots hardware.

dlg

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2018 02 03 at 11.50.19 am
Automatic Generation of Reduced CPG Control Networks for Locomotion of Arbitrary Modular Robot Structures

Bonardi, S., Vespignani, M., Möckel, R., Van den Kieboom, J., Pouya, S., Spröwitz, A., Ijspeert, A.

In Proceedings of Robotics: Science and Systems, University of California, Barkeley, 2014 (inproceedings)

Abstract
The design of efficient locomotion controllers for arbitrary structures of reconfigurable modular robots is challenging because the morphology of the structure can change dynamically during the completion of a task. In this paper, we propose a new method to automatically generate reduced Central Pattern Generator (CPG) networks for locomotion control based on the detection of bio-inspired sub-structures, like body and limbs, and articulation joints inside the robotic structure. We demonstrate how that information, coupled with the potential symmetries in the structure, can be used to speed up the optimization of the gaits and investigate its impact on the solution quality (i.e. the velocity of the robotic structure and the potential internal collisions between robotic modules). We tested our approach on three simulated structures and observed that the reduced network topologies in the first iterations of the optimization process performed significantly better than the fully open ones.

dlg

DOI [BibTex]

DOI [BibTex]


no image
Incremental Local Gaussian Regression

Meier, F., Hennig, P., Schaal, S.

In Advances in Neural Information Processing Systems 27, pages: 972-980, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014, clmc (inproceedings)

am ei pn

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Efficient Bayesian Local Model Learning for Control

Meier, F., Hennig, P., Schaal, S.

In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pages: 2244 - 2249, IROS, 2014, clmc (inproceedings)

Abstract
Model-based control is essential for compliant controland force control in many modern complex robots, like humanoidor disaster robots. Due to many unknown and hard tomodel nonlinearities, analytical models of such robots are oftenonly very rough approximations. However, modern optimizationcontrollers frequently depend on reasonably accurate models,and degrade greatly in robustness and performance if modelerrors are too large. For a long time, machine learning hasbeen expected to provide automatic empirical model synthesis,yet so far, research has only generated feasibility studies butno learning algorithms that run reliably on complex robots.In this paper, we combine two promising worlds of regressiontechniques to generate a more powerful regression learningsystem. On the one hand, locally weighted regression techniquesare computationally efficient, but hard to tune due to avariety of data dependent meta-parameters. On the other hand,Bayesian regression has rather automatic and robust methods toset learning parameters, but becomes quickly computationallyinfeasible for big and high-dimensional data sets. By reducingthe complexity of Bayesian regression in the spirit of local modellearning through variational approximations, we arrive at anovel algorithm that is computationally efficient and easy toinitialize for robust learning. Evaluations on several datasetsdemonstrate very good learning performance and the potentialfor a general regression learning tool for robotics.

am ei pn

PDF link (url) DOI [BibTex]

PDF link (url) DOI [BibTex]


Thumb xl screen shot 2018 02 03 at 7.52.45 pm
Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs

Spröwitz, A. T., Ajallooeian, M., Tuleu, A., Ijspeert, A. J.

Frontiers in Computational Neuroscience, 8(27):1-13, 2014 (article)

Abstract
In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95\% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2–3 primitives) than kinematic patterns from on-ground locomotion (νm4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware.

dlg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2009


no image
Bayesian Quadratic Reinforcement Learning

Hennig, P., Stern, D., Graepel, T.

NIPS Workshop on Probabilistic Approaches for Robotics and Control, December 2009 (poster)

ei pn

PDF Web [BibTex]

2009


PDF Web [BibTex]


no image
Expectation Propagation on the Maximum of Correlated Normal Variables

Hennig, P.

Cavendish Laboratory: University of Cambridge, July 2009 (techreport)

Abstract
Many inference problems involving questions of optimality ask for the maximum or the minimum of a finite set of unknown quantities. This technical report derives the first two posterior moments of the maximum of two correlated Gaussian variables and the first two posterior moments of the two generating variables (corresponding to Gaussian approximations minimizing relative entropy). It is shown how this can be used to build a heuristic approximation to the maximum relationship over a finite set of Gaussian variables, allowing approximate inference by Expectation Propagation on such quantities.

ei pn

Web [BibTex]

Web [BibTex]


Thumb xl screen shot 2018 02 03 at 4.40.27 pm
Roombots-mechanical design of self-reconfiguring modular robots for adaptive furniture

Spröwitz, A., Billard, A., Dillenbourg, P., Ijspeert, A. J.

In Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA), pages: 4259-4264, IEEE, Kobe, 2009 (inproceedings)

Abstract
We aim at merging technologies from information technology, roomware, and robotics in order to design adaptive and intelligent furniture. This paper presents design principles for our modular robots, called Roombots, as future building blocks for furniture that moves and self-reconfigures. The reconfiguration is done using dynamic connection and disconnection of modules and rotations of the degrees of freedom. We are furthermore interested in applying Roombots towards adaptive behaviour, such as online learning of locomotion patterns. To create coordinated and efficient gait patterns, we use a Central Pattern Generator (CPG) approach, which can easily be optimized by any gradient-free optimization algorithm. To provide a hardware framework we present the mechanical design of the Roombots modules and an active connection mechanism based on physical latches. Further we discuss the application of our Roombots modules as pieces of a homogenic or heterogenic mix of building blocks for static structures.

dlg

DOI [BibTex]

DOI [BibTex]

2007


no image
Point-spread functions for backscattered imaging in the scanning electron microscope

Hennig, P., Denk, W.

Journal of Applied Physics , 102(12):1-8, December 2007 (article)

Abstract
One knows the imaging system's properties are central to the correct interpretation of any image. In a scanning electron microscope regions of different composition generally interact in a highly nonlinear way during signal generation. Using Monte Carlo simulations we found that in resin-embedded, heavy metal-stained biological specimens staining is sufficiently dilute to allow an approximately linear treatment. We then mapped point-spread functions for backscattered-electron contrast, for primary energies of 3 and 7 keV and for different detector specifications. The point-spread functions are surprisingly well confined (both laterally and in depth) compared even to the distribution of only those scattered electrons that leave the sample again.

ei pn

Web DOI [BibTex]

2007


Web DOI [BibTex]


Thumb xl screen shot 2018 02 03 at 6.38.18 pm
An easy to use bluetooth scatternet protocol for fast data exchange in wireless sensor networks and autonomous robots

Mockel, R., Spröwitz, A., Maye, J., Ijspeert, A. J.

In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 2801-2806, IEEE, San Diego, CA, 2007 (inproceedings)

Abstract
We present a Bluetooth scatternet protocol (SNP) that provides the user with a serial link to all connected members in a transparent wireless Bluetooth network. By using only local decision making we can reduce the overhead of our scatternet protocol dramatically. We show how our SNP software layer simplifies a variety of tasks like the synchronization of central pattern generator controllers for actuators, collecting sensory data and building modular robot structures. The whole Bluetooth software stack including our new scatternet layer is implemented on a single Bluetooth and memory chip. To verify and characterize the SNP we provide data from experiments using real hardware instead of software simulation. This gives a realistic overview of the scatternet performance showing higher order effects that are difficult to be simulated correctly and guaranties the correct function of the SNP in real world applications.

dlg

DOI [BibTex]

DOI [BibTex]