Header logo is


2020


Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms
Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms

Dong, X., Sitti, M.

The International Journal of Robotics Research, 2020 (article)

Abstract
Magnetically actuated mobile microrobots can access distant, enclosed, and small spaces, such as inside microfluidic channels and the human body, making them appealing for minimally invasive tasks. Despite their simplicity when scaling down, creating collective microrobots that can work closely and cooperatively, as well as reconfigure their formations for different tasks, would significantly enhance their capabilities such as manipulation of objects. However, a challenge of realizing such cooperative magnetic microrobots is to program and reconfigure their formations and collective motions with under-actuated control signals. This article presents a method of controlling 2D static and time-varying formations among collective self-repelling ferromagnetic microrobots (100 μm to 350 μm in diameter, up to 260 in number) by spatially and temporally programming an external magnetic potential energy distribution at the air–water interface or on solid surfaces. A general design method is introduced to program external magnetic potential energy using ferromagnets. A predictive model of the collective system is also presented to predict the formation and guide the design procedure. With the proposed method, versatile complex static formations are experimentally demonstrated and the programmability and scaling effects of formations are analyzed. We also demonstrate the collective mobility of these magnetic microrobots by controlling them to exhibit bio-inspired collective behaviors such as aggregation, directional motion with arbitrary swarm headings, and rotational swarming motion. Finally, the functions of the produced microrobotic swarm are demonstrated by controlling them to navigate through cluttered environments and complete reconfigurable cooperative manipulation tasks.

pi

DOI [BibTex]


Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots
Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots

Oezge Drama, , Badri-Spröwitz, A.

Bioinspiration & Biomimetics, 2020 (article)

Abstract
Bipedal animals have diverse morphologies and advanced locomotion abilities. Terrestrial birds, in particular, display agile, efficient, and robust running motion, in which they exploit the interplay between the body segment masses and moment of inertias. On the other hand, most legged robots are not able to generate such versatile and energy-efficient motion and often disregard trunk movements as a means to enhance their locomotion capabilities. Recent research investigated how trunk motions affect the gait characteristics of humans, but there is a lack of analysis across different bipedal morphologies. To address this issue, we analyze avian running based on a spring-loaded inverted pendulum model with a pronograde (horizontal) trunk. We use a virtual point based control scheme and modify the alignment of the ground reaction forces to assess how our control strategy influences the trunk pitch oscillations and energetics of the locomotion. We derive three potential key strategies to leverage trunk pitch motions that minimize either the energy fluctuations of the center of mass or the work performed by the hip and leg. We suggest how these strategies could be used in legged robotics.

dlg

link (url) DOI [BibTex]

2001


no image
Survey of nanomanipulation systems

Sitti, M.

In Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, pages: 75-80, 2001 (inproceedings)

pi

[BibTex]

2001


[BibTex]


no image
Nanotribological characterization system by AFM based controlled pushing

Sitti, M.

In Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, pages: 99-104, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Towards flapping wing control for a micromechanical flying insect

Yan, J., Wood, R. J., Avadhanula, S., Sitti, M., Fearing, R. S.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 4, pages: 3901-3908, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Man-machine interface for micro/nano manipulation with an afm probe

Aruk, B., Hashimoto, H., Sitti, M.

In Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, pages: 151-156, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Development of PZT and PZN-PT based unimorph actuators for micromechanical flapping mechanisms

Sitti, M., Campolo, D., Yan, J., Fearing, R. S.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 4, pages: 3839-3846, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Thorax Design and Wing Control for a Micromechanical Flying Insect

Yan, J, Ayadhanula, S, Sitti, M, Wood, RJ, Fearing, RS

In PROCEEDINGS OF THE ANNUAL ALLERTON CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING, 39(2):952-961, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
PZT actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax

Sitti, M.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 4, pages: 3893-3900, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Wing transmission for a micromechanical flying insect

Yan, J., Avadhanula, S., Birch, J., Dickinson, M., Sitti, M., Su, T., Fearing, R.

Journal of Micromechatronics, 1(3):221-237, Brill, 2001 (article)

pi

[BibTex]

[BibTex]


no image
Development of a scaled teleoperation system for nano scale interaction and manipulation

Sitti, M., Aruk, B., Shintani, H., Hashimoto, H.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 1, pages: 860-867, 2001 (inproceedings)

pi

[BibTex]

[BibTex]

1999


no image
Tele-touch feedback of surfaces at the micro/nano scale: Modeling and experiments

Sitti, M., Horighuchi, S., Hashimoto, H.

In Intelligent Robots and Systems, 1999. IROS’99. Proceedings. 1999 IEEE/RSJ International Conference on, 2, pages: 882-888, 1999 (inproceedings)

pi

[BibTex]

1999


[BibTex]


no image
Challenge to micro/nanomanipulation using atomic force microscope

Hashimoto, H., Sitti, M.

In Micromechatronics and Human Science, 1999. MHS’99. Proceedings of 1999 International Symposium on, pages: 35-42, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
< 研究速報>(< 小特集> マイクロマシン)

Sitti, M., 橋本秀紀,

生産研究, 51(8):651-653, 東京大学, 1999 (article)

pi

[BibTex]

[BibTex]


no image
Visualization interface for AFM-based nano-manipulation

Horiguchi, S., Sitti, M., Hashimoto, H.

In Industrial Electronics, 1999. ISIE’99. Proceedings of the IEEE International Symposium on, 1, pages: 310-315, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Micro/Nano Manipulation Using Atomic Force Microscope.

Sitti, M., Hashimoto, H.

生産研究, 51(8):651-653, 東京大学生産技術研究所, 1999 (article)

pi

[BibTex]

[BibTex]


no image
Tele-nanorobotics 2-d manipulation of micro/nanoparticles using afm

Sitti, M., Horiguchi, S., Hashimoto, H.

In Advanced Intelligent Mechatronics, 1999. Proceedings. 1999 IEEE/ASME International Conference on, pages: 786-786, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Virtual Reality-Based Teleoperation in the Micro/Nano World.

Sitti, M., Hashimoto, H.

生産研究, 51(8):654-656, 東京大学生産技術研究所, 1999 (article)

pi

[BibTex]

[BibTex]


no image
Two-dimensional fine particle positioning using a piezoresistive cantilever as a micro/nano-manipulator

Sitti, M., Hashimoto, H.

In Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on, 4, pages: 2729-2735, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Teleoperated nano scale object manipulation

Sitti, M., Hashimoto, H.

Recent Advances on Mechatronics, pages: 322-335, Singapore: Springer-Verlag, 1999 (article)

pi

[BibTex]

[BibTex]


no image
In vivo diabetic wound healing with nanofibrous scaffolds modified with gentamicin and recombinant human epidermal growth factor

Dwivedi, C., Pandey, I., Pandey, H., Patil, S., Mishra, S. B., Pandey, A. C., Zamboni, P., Ramteke, P. W., Singh, A. V.

Journal of Biomedical Materials Research Part A, 106(3):641-651, March (article)

Abstract
Abstract Diabetic wounds are susceptible to microbial infection. The treatment of these wounds requires a higher payload of growth factors. With this in mind, the strategy for this study was to utilize a novel payload comprising of Eudragit RL/RS 100 nanofibers carrying the bacterial inhibitor gentamicin sulfate (GS) in concert with recombinant human epidermal growth factor (rhEGF); an accelerator of wound healing. GS containing Eudragit was electrospun to yield nanofiber scaffolds, which were further modified by covalent immobilization of rhEGF to their surface. This novel fabricated nanoscaffold was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. The thermal behavior of the nanoscaffold was determined using thermogravimetric analysis and differential scanning calorimetry. In the in vitro antibacterial assays, the nanoscaffolds exhibited comparable antibacterial activity to pure gentemicin powder. In vivo work using female C57/BL6 mice, the nanoscaffolds induced faster wound healing activity in dorsal wounds compared to the control. The paradigm in this study presents a robust in vivo model to enhance the applicability of drug delivery systems in wound healing applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 641–651, 2018.

pi

link (url) DOI [BibTex]


link (url) DOI [BibTex]


no image
Robotics Research

Tong, Chi Hay, Furgale, Paul, Barfoot, Timothy D, Guizilini, Vitor, Ramos, Fabio, Chen, Yushan, T\uumová, Jana, Ulusoy, Alphan, Belta, Calin, Tenorth, Moritz, others

(article)

pi

[BibTex]

[BibTex]