Header logo is


2020


no image
Algorithmic Recourse: from Counterfactual Explanations to Interventions

Karimi, A., Schölkopf, B., Valera, I.

37th International Conference on Machine Learning (ICML), July 2020 (conference) Submitted

ei plg

[BibTex]

2020


[BibTex]


Learning of sub-optimal gait controllers for magnetic walking soft millirobots
Learning of sub-optimal gait controllers for magnetic walking soft millirobots

Culha, U., Demir, S. O., Trimpe, S., Sitti, M.

In Proceedings of Robotics: Science and Systems, July 2020, Culha and Demir are equally contributing authors (inproceedings)

Abstract
Untethered small-scale soft robots have promising applications in minimally invasive surgery, targeted drug delivery, and bioengineering applications as they can access confined spaces in the human body. However, due to highly nonlinear soft continuum deformation kinematics, inherent stochastic variability during fabrication at the small scale, and lack of accurate models, the conventional control methods cannot be easily applied. Adaptivity of robot control is additionally crucial for medical operations, as operation environments show large variability, and robot materials may degrade or change over time,which would have deteriorating effects on the robot motion and task performance. Therefore, we propose using a probabilistic learning approach for millimeter-scale magnetic walking soft robots using Bayesian optimization (BO) and Gaussian processes (GPs). Our approach provides a data-efficient learning scheme to find controller parameters while optimizing the stride length performance of the walking soft millirobot robot within a small number of physical experiments. We demonstrate adaptation to fabrication variabilities in three different robots and to walking surfaces with different roughness. We also show an improvement in the learning performance by transferring the learning results of one robot to the others as prior information.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Model-Agnostic Counterfactual Explanations for Consequential Decisions

Karimi, A., Barthe, G., Balle, B., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), June 2020 (conference) Accepted

ei plg

arXiv [BibTex]

arXiv [BibTex]


FootTile: a Rugged Foot Sensor for Force and Center of Pressure Sensing in Soft Terrain
FootTile: a Rugged Foot Sensor for Force and Center of Pressure Sensing in Soft Terrain

Felix Ruppert, , Badri-Spröwitz, A.

In Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, International Conference on Robotics and Automation, May 2020 (inproceedings) Accepted

Abstract
In this paper, we present FootTile, a foot sensor for reaction force and center of pressure sensing in challenging terrain. We compare our sensor design to standard biomechanical devices, force plates and pressure plates. We show that FootTile can accurately estimate force and pressure distribution during legged locomotion. FootTile weighs 0.9g, has a sampling rate of 330 Hz, a footprint of 10×10 mm and can easily be adapted in sensor range to the required load case. In three experiments, we validate: first, the performance of the individual sensor, second an array of FootTiles for center of pressure sensing and third the ground reaction force estimation during locomotion in granular substrate. We then go on to show the accurate sensing capabilities of the waterproof sensor in liquid mud, as a showcase for real world rough terrain use.

dlg

Youtube1 Youtube2 Presentation link (url) [BibTex]

Youtube1 Youtube2 Presentation link (url) [BibTex]


Towards 5-DoF Control of an Untethered Magnetic Millirobot via MRI Gradient Coils
Towards 5-DoF Control of an Untethered Magnetic Millirobot via MRI Gradient Coils

Onder Erin, D. A. M. E. T., Sitti, M.

In IEEE International Conference on Robotics and Automation (ICRA), 2020 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A Real-Robot Dataset for Assessing Transferability of Learned Dynamics Models

Agudelo-España, D., Zadaianchuk, A., Wenk, P., Garg, A., Akpo, J., Grimminger, F., Viereck, J., Naveau, M., Righetti, L., Martius, G., Krause, A., Schölkopf, B., Bauer, S., Wüthrich, M.

IEEE International Conference on Robotics and Automation (ICRA), 2020 (conference) Accepted

am al ei mg

Project Page PDF [BibTex]

Project Page PDF [BibTex]


no image
Fair Decisions Despite Imperfect Predictions

Kilbertus, N., Gomez Rodriguez, M., Schölkopf, B., Muandet, K., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 2020 (conference) Accepted

ei plg

[BibTex]

[BibTex]


Optimizing Rank-based Metrics with Blackbox Differentiation
Optimizing Rank-based Metrics with Blackbox Differentiation

Rolinek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis, C., Martius, G.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020, Best paper nomination (inproceedings)

Abstract
Rank-based metrics are some of the most widely used criteria for performance evaluation of computer vision models. Despite years of effort, direct optimization for these metrics remains a challenge due to their non-differentiable and non-decomposable nature. We present an efficient, theoretically sound, and general method for differentiating rank-based metrics with mini-batch gradient descent. In addition, we address optimization instability and sparsity of the supervision signal that both arise from using rank-based metrics as optimization targets. Resulting losses based on recall and Average Precision are applied to image retrieval and object detection tasks. We obtain performance that is competitive with state-of-the-art on standard image retrieval datasets and consistently improve performance of near state-of-the-art object detectors.

al

Code Long Oral Short Oral Arxiv Project Page [BibTex]

Code Long Oral Short Oral Arxiv Project Page [BibTex]

2019


no image
Limitations of the empirical Fisher approximation for natural gradient descent

Kunstner, F., Hennig, P., Balles, L.

Advances in Neural Information Processing Systems 32, pages: 4158-4169, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei pn

link (url) [BibTex]

2019


link (url) [BibTex]


no image
Convergence Guarantees for Adaptive Bayesian Quadrature Methods

Kanagawa, M., Hennig, P.

Advances in Neural Information Processing Systems 32, pages: 6234-6245, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei pn

link (url) [BibTex]

link (url) [BibTex]


A Learnable Safety Measure
A Learnable Safety Measure

Heim, S., Rohr, A. V., Trimpe, S., Badri-Spröwitz, A.

Conference on Robot Learning, November 2019 (conference) Accepted

dlg ics

Arxiv [BibTex]

Arxiv [BibTex]


Trunk Pitch Oscillations for Joint Load Redistribution in Humans and Humanoid Robots
Trunk Pitch Oscillations for Joint Load Redistribution in Humans and Humanoid Robots

Drama, Ö., Badri-Spröwitz, A.

Proceedings International Conference on Humanoid Robots, Humanoids, September 2019 (conference) Accepted

dlg

link (url) [BibTex]

link (url) [BibTex]


The positive side of damping
The positive side of damping

Heim, S., Millard, M., Le Mouel, C., Sproewitz, A.

Proceedings of AMAM, The 9th International Symposium on Adaptive Motion of Animals and Machines, August 2019 (conference) Accepted

dlg

[BibTex]

[BibTex]


no image
Variational Autoencoders Recover PCA Directions (by Accident)

Rolinek, M., Zietlow, D., Martius, G.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
The Variational Autoencoder (VAE) is a powerful architecture capable of representation learning and generative modeling. When it comes to learning interpretable (disentangled) representations, VAE and its variants show unparalleled performance. However, the reasons for this are unclear, since a very particular alignment of the latent embedding is needed but the design of the VAE does not encourage it in any explicit way. We address this matter and offer the following explanation: the diagonal approximation in the encoder together with the inherent stochasticity force local orthogonality of the decoder. The local behavior of promoting both reconstruction and orthogonality matches closely how the PCA embedding is chosen. Alongside providing an intuitive understanding, we justify the statement with full theoretical analysis as well as with experiments.

al

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


A Magnetically-Actuated Untethered Jellyfish-Inspired Soft Milliswimmer
A Magnetically-Actuated Untethered Jellyfish-Inspired Soft Milliswimmer

(Best Paper Award)

Ziyu Ren, T. W., Hu, W.

RSS 2019: Robotics: Science and Systems Conference, June 2019 (conference)

pi

[BibTex]

[BibTex]


no image
DeepOBS: A Deep Learning Optimizer Benchmark Suite

Schneider, F., Balles, L., Hennig, P.

7th International Conference on Learning Representations (ICLR), May 2019 (conference)

ei pn

link (url) [BibTex]

link (url) [BibTex]


no image
Fast and Robust Shortest Paths on Manifolds Learned from Data

Arvanitidis, G., Hauberg, S., Hennig, P., Schober, M.

Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1506-1515, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

ei pn

PDF link (url) [BibTex]

PDF link (url) [BibTex]


Active Probabilistic Inference on Matrices for Pre-Conditioning in Stochastic Optimization
Active Probabilistic Inference on Matrices for Pre-Conditioning in Stochastic Optimization

de Roos, F., Hennig, P.

Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1448-1457, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

Abstract
Pre-conditioning is a well-known concept that can significantly improve the convergence of optimization algorithms. For noise-free problems, where good pre-conditioners are not known a priori, iterative linear algebra methods offer one way to efficiently construct them. For the stochastic optimization problems that dominate contemporary machine learning, however, this approach is not readily available. We propose an iterative algorithm inspired by classic iterative linear solvers that uses a probabilistic model to actively infer a pre-conditioner in situations where Hessian-projections can only be constructed with strong Gaussian noise. The algorithm is empirically demonstrated to efficiently construct effective pre-conditioners for stochastic gradient descent and its variants. Experiments on problems of comparably low dimensionality show improved convergence. In very high-dimensional problems, such as those encountered in deep learning, the pre-conditioner effectively becomes an automatic learning-rate adaptation scheme, which we also empirically show to work well.

ei pn

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Elastic modulus affects adhesive strength of gecko-inspired synthetics in variable temperature and humidity

Mitchell, CT, Drotlef, D, Dayan, CB, Sitti, M, Stark, AY

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E372-E372, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, March 2019 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Control What You Can: Intrinsically Motivated Task-Planning Agent

Blaes, S., Vlastelica, M., Zhu, J., Martius, G.

In Advances in Neural Information Processing (NeurIPS’19), pages: 12520-12531, Curran Associates, Inc., NeurIPS'19, 2019 (inproceedings)

Abstract
We present a novel intrinsically motivated agent that learns how to control the environment in the fastest possible manner by optimizing learning progress. It learns what can be controlled, how to allocate time and attention, and the relations between objects using surprise based motivation. The effectiveness of our method is demonstrated in a synthetic as well as a robotic manipulation environment yielding considerably improved performance and smaller sample complexity. In a nutshell, our work combines several task-level planning agent structures (backtracking search on task graph, probabilistic road-maps, allocation of search efforts) with intrinsic motivation to achieve learning from scratch.

al

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Falsification of hybrid systems using symbolic reachability and trajectory splicing

Bogomolov, S., Frehse, G., Gurung, A., Li, D., Martius, G., Ray, R.

In International Conference on Hybrid Systems: Computation and Control, pages: 1-10, HSCC’19, ACM, 2019 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


Quantifying the Robustness of Natural Dynamics: a Viability Approach
Quantifying the Robustness of Natural Dynamics: a Viability Approach

Heim, S., Sproewitz, A.

Proceedings of Dynamic Walking , Dynamic Walking , 2019 (conference) Accepted

dlg

Submission DW2019 [BibTex]

Submission DW2019 [BibTex]


no image
Gecko-inspired composite microfibers for reversible adhesion on smooth and rough surfaces

Drotlef, D., Dayan, C., Sitti, M.

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E58-E58, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, 2019 (inproceedings)

pi

[BibTex]

[BibTex]

2008


no image
Simulation and analysis of a passive pitch reversal flapping wing mechanism for an aerial robotic platform

Arabagi, V., Sitti, M.

In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages: 1260-1265, 2008 (inproceedings)

pi

Project Page [BibTex]

2008


Project Page [BibTex]


no image
Fabrication and Characterization of Biologically Inspired Mushroom-Shaped Elastomer Microfiber Arrays

Kim, S., Sitti, M.

In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pages: 839-847, 2008 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces

Aksak, B., Murphy, M. P., Sitti, M.

In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages: 3058-3063, 2008 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Miniature Mobile Robots Down to Micron Scale

Sitti, M.

In Micro-NanoMechatronics and Human Science, 2008. MHS 2008. International Symposium on, pages: 525-525, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Polymeric Micro/Nanofiber Manufacturing and Mechanical Characterization

Nain, A. S., Sitti, M., Amon, C.

In ASME 2008 International Mechanical Engineering Congress and Exposition, pages: 295-303, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces

Floyd, S., Pawashe, C., Sitti, M.

In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages: 419-424, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Fabrication of bio-inspired elastomer nanofiber arrays with spatulate tips using notching effect

Kim, S., Sitti, M., Jang, J., Thomas, E. L.

In Nanotechnology, 2008. NANO’08. 8th IEEE Conference on, pages: 780-782, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A motorized anchoring mechanism for a tethered capsule robot using fibrillar adhesives for interventions in the esophagus

Glass, P., Cheung, E., Wang, H., Appasamy, R., Sitti, M.

In Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on, pages: 758-764, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Emergence of Interaction Among Adaptive Agents

Martius, G., Nolfi, S., Herrmann, J. M.

In Proc. From Animals to Animats 10 (SAB 2008), 5040, pages: 457-466, LNCS, Springer, 2008 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


no image
Fabrication of Single and Multi-Layer Fibrous Biomaterial Scaffolds for Tissue Engineering

Nain, A. S., Miller, E., Sitti, M., Campbell, P., Amon, C.

In ASME 2008 International Mechanical Engineering Congress and Exposition, pages: 231-238, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Performance of different foot designs for a water running robot

Floyd, S., Adilak, S., Ramirez, S., Rogman, R., Sitti, M.

In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages: 244-250, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Dynamic modeling of a basilisk lizard inspired quadruped robot running on water

Park, H. S., Floyd, S., Sitti, M.

In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages: 3101-3107, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Bacterial propulsion of chemically patterned micro-cylinders

Behkam, B., Sitti, M.

In Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on, pages: 753-757, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Structure from Behavior in Autonomous Agents

Martius, G., Fiedler, K., Herrmann, J.

In Proc. IEEE Intl. Conf. Intelligent Robots and Systems (IROS 2008), pages: 858 - 862, 2008 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


no image
Design and Numerical Modeling of an On-Board Chemical Release Module for Motion Control of Bacteria-Propelled Swimming Micro-Robots

Behkam, B., Nain, A. S., Amon, C. H., Sitti, M.

In ASME 2008 International Mechanical Engineering Congress and Exposition, pages: 239-244, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Investigation of Calcium Mechanotransduction by Quasi 3-D Microfiber Mechanical Stimulation of Cells

Ruder, W. C., Pratt, E. D., Sitti, M., LeDuc, P. R., Antaki, J. F.

In ASME 2008 Summer Bioengineering Conference, pages: 1049-1050, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Beanbag robotics: Robotic swarms with 1-dof units

Kriesel, D. M., Cheung, E., Sitti, M., Lipson, H.

In International Conference on Ant Colony Optimization and Swarm Intelligence, pages: 267-274, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Particle image velocimetry and thrust of flagellar micro propulsion systems

Danis, U., Sitti, M., Pekkan, K.

In APS Division of Fluid Dynamics Meeting Abstracts, 1, 2008 (inproceedings)

pi

[BibTex]

[BibTex]

2001


no image
Survey of nanomanipulation systems

Sitti, M.

In Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, pages: 75-80, 2001 (inproceedings)

pi

[BibTex]

2001


[BibTex]


no image
Nanotribological characterization system by AFM based controlled pushing

Sitti, M.

In Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, pages: 99-104, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Towards flapping wing control for a micromechanical flying insect

Yan, J., Wood, R. J., Avadhanula, S., Sitti, M., Fearing, R. S.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 4, pages: 3901-3908, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Man-machine interface for micro/nano manipulation with an afm probe

Aruk, B., Hashimoto, H., Sitti, M.

In Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, pages: 151-156, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Development of PZT and PZN-PT based unimorph actuators for micromechanical flapping mechanisms

Sitti, M., Campolo, D., Yan, J., Fearing, R. S.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 4, pages: 3839-3846, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Thorax Design and Wing Control for a Micromechanical Flying Insect

Yan, J, Ayadhanula, S, Sitti, M, Wood, RJ, Fearing, RS

In PROCEEDINGS OF THE ANNUAL ALLERTON CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING, 39(2):952-961, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
PZT actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax

Sitti, M.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 4, pages: 3893-3900, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Development of a scaled teleoperation system for nano scale interaction and manipulation

Sitti, M., Aruk, B., Shintani, H., Hashimoto, H.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 1, pages: 860-867, 2001 (inproceedings)

pi

[BibTex]

[BibTex]