Header logo is


2016


no image
Helping people make better decisions using optimal gamification

Lieder, F., Griffiths, T. L.

In Proceedings of the 38th Annual Conference of the Cognitive Science Society, 2016 (inproceedings)

Abstract
Game elements like points and levels are a popular tool to nudge and engage students and customers. Yet, no theory can tell us which incentive structures work and how to design them. Here we connect the practice of gamification to the theory of reward shaping in reinforcement learning. We leverage this connection to develop a method for designing effective incentive structures and delineating when gamification will succeed from when it will fail. We evaluate our method in two behavioral experiments. The results of the first experiment demonstrate that incentive structures designed by our method help people make better, less short-sighted decisions and avoid the pitfalls of less principled approaches. The results of the second experiment illustrate that such incentive structures can be effectively implemented using game elements like points and badges. These results suggest that our method provides a principled way to leverage gamification to help people make better decisions.

re

link (url) Project Page [BibTex]

2016


link (url) Project Page [BibTex]


no image
On designing an active tail for body-pitch control in legged robots via decoupling of control objectives

Heim, S. W., Ajallooeian, M., Eckert, P., Vespignani, M., Ijspeert, A.

In ASSISTIVE ROBOTICS: Proceedings of the 18th International Conference on CLAWAR 2015, pages: 256-264, 2016 (inproceedings)

dlg

[BibTex]

[BibTex]

2015


no image
When to use which heuristic: A rational solution to the strategy selection problem

Lieder, F., Griffiths, T. L.

In Proceedings of the 37th Annual Conference of the Cognitive Science Society, 2015 (inproceedings)

Abstract
The human mind appears to be equipped with a toolbox full of cognitive strategies, but how do people decide when to use which strategy? We leverage rational metareasoning to derive a rational solution to this problem and apply it to decision making under uncertainty. The resulting theory reconciles the two poles of the debate about human rationality by proposing that people gradually learn to make rational use of fallible heuristics. We evaluate this theory against empirical data and existing accounts of strategy selection (i.e. SSL and RELACS). Our results suggest that while SSL and RELACS can explain people's ability to adapt to homogeneous environments in which all decision problems are of the same type, rational metareasoning can additionally explain people's ability to adapt to heterogeneous environments and flexibly switch strategies from one decision to the next.

re

link (url) Project Page [BibTex]

2015


link (url) Project Page [BibTex]


no image
Children and Adults Differ in their Strategies for Social Learning

Lieder, F., Sim, Z. L., Hu, J. C., Griffiths, T. L., Xu, F.

In Proceedings of the 37th Annual Conference of the Cognitive Science Society, 2015 (inproceedings)

Abstract
Adults and children rely heavily on other people’s testimony. However, domains of knowledge where there is no consensus on the truth are likely to result in conflicting testimonies. Previous research has demonstrated that in these cases, learners look towards the majority opinion to make decisions. However, it remains unclear how learners evaluate social information, given that considering either the overall valence, or the number of testimonies, or both may lead to different conclusions. We therefore formalized several social learning strategies and compared them to the performance of adults and children. We find that children use different strategies than adults. This suggests that the development of social learning may involve the acquisition of cognitive strategies.

re

link (url) [BibTex]

link (url) [BibTex]


Comparing the effect of different spine and leg designs for a small bounding quadruped robot
Comparing the effect of different spine and leg designs for a small bounding quadruped robot

Eckert, P., Spröwitz, A., Witte, H., Ijspeert, A. J.

In Proceedings of ICRA, pages: 3128-3133, Seattle, Washington, USA, 2015 (inproceedings)

Abstract
We present Lynx-robot, a quadruped, modular, compliant machine. It alternately features a directly actuated, single-joint spine design, or an actively supported, passive compliant, multi-joint spine configuration. Both spine con- figurations bend in the sagittal plane. This study aims at characterizing these two, largely different spine concepts, for a bounding gait of a robot with a three segmented, pantograph leg design. An earlier, similar-sized, bounding, quadruped robot named Bobcat with a two-segment leg design and a directly actuated, single-joint spine design serves as a comparison robot, to study and compare the effect of the leg design on speed, while keeping the spine design fixed. Both proposed spine designs (single rotatory and active and multi-joint compliant) reach moderate, self-stable speeds.

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Learning from others: Adult and child strategies in assessing conflicting ratings

Hu, J., Lieder, F., Griffiths, T. L., Xu, F.

In Biennial Meeting of the Society for Research in Child Development, Philadelphia, Pennsylvania, USA, 2015 (inproceedings)

re

[BibTex]

[BibTex]


no image
Utility-weighted sampling in decisions from experience

Lieder, F., Griffiths, T. L., Hsu, M.

In The 2nd Multidisciplinary Conference on Reinforcement Learning and Decision Making, 2015 (inproceedings)

re

[BibTex]

[BibTex]

2010


Graph signature for self-reconfiguration planning of modules with symmetry
Graph signature for self-reconfiguration planning of modules with symmetry

Asadpour, M., Ashtiani, M. H. Z., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 5295-5300, IEEE, St. Louis, MO, 2010 (inproceedings)

Abstract
In our previous works we had developed a framework for self-reconfiguration planning based on graph signature and graph edit-distance. The graph signature is a fast isomorphism test between different configurations and the graph edit-distance is a similarity metric. But the algorithm is not suitable for modules with symmetry. In this paper we improve the algorithm in order to deal with symmetric modules. Also, we present a new heuristic function to guide the search strategy by penalizing the solutions with more number of actions. The simulation results show the new algorithm not only deals with symmetric modules successfully but also finds better solutions in a shorter time.

dlg

DOI [BibTex]

2010


DOI [BibTex]


Roombots - Towards decentralized reconfiguration with self-reconfiguring modular robotic metamodules
Roombots - Towards decentralized reconfiguration with self-reconfiguring modular robotic metamodules

Spröwitz, A., Laprade, P., Bonardi, S., Mayer, M., Moeckel, R., Mudry, P., Ijspeert, A. J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1126-1132, IEEE, Taipeh, 2010 (inproceedings)

Abstract
This paper presents our work towards a decentralized reconfiguration strategy for self-reconfiguring modular robots, assembling furniture-like structures from Roombots (RB) metamodules. We explore how reconfiguration by loco- motion from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using Roombots metamodules—two Roombots modules connected serially—that use broadcast signals, lookup tables of their movement space, assumptions about their neighborhood, and connections to a structured surface to collectively build desired structures without the need of a centralized planner.

dlg

DOI [BibTex]

DOI [BibTex]


Automatic Gait Generation in Modular Robots: to Oscillate or to Rotate? that is the question
Automatic Gait Generation in Modular Robots: to Oscillate or to Rotate? that is the question

Pouya, S., van den Kieboom, J., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 514-520, IEEE, Taipei, 2010 (inproceedings)

Abstract
Modular robots offer the possibility to design robots with a high diversity of shapes and functionalities. This nice feature also brings an important challenge: namely how to design efficient locomotion gaits for arbitrary robot structures with many degrees of freedom. In this paper, we present a framework that allows one to explore and identify highly different gaits for a given arbitrary- shaped modular robot. We use simulated robots made of several Roombots modules that have three rotational joints each. These modules have the interesting feature that they can produce both oscillatory movements (i.e. periodic movements around a rest position) and rotational movements (i.e. with continuously increasing angle), leading to very rich locomotion patterns. Here we ask ourselves which types of movements —purely oscillatory, purely rotational, or a combination of both— lead to the fastest gaits. To address this question we designed a control architecture based on a distributed system of coupled phase oscillators that can produce synchronized rotations and oscillations in many degrees of freedom. We also designed a specific optimization algorithm that can automatically design hybrid controllers, i.e. controllers that use oscillations in some joints and rotations in others, for fast gaits. The proposed framework is verified by multiple simulations for several robot morphologies. The results show that (i) the question whether it is better to oscillate or to rotate depends on the morphology of the robot, and that in general it is best to do both, (ii) the optimization framework can successfully generate hybrid controllers that outperform purely oscillatory and purely rotational ones, and (iii) the resulting gaits are fast, innovative, and would have been hard to design by hand.

dlg

DOI [BibTex]

DOI [BibTex]


Roombots: Design and Implementation of a Modular Robot for Reconfiguration and Locomotion
Roombots: Design and Implementation of a Modular Robot for Reconfiguration and Locomotion

Spröwitz, A.

EPFL, Lausanne, Lausanne, 2010 (phdthesis)

dlg

DOI [BibTex]

2007


An easy to use bluetooth scatternet protocol for fast data exchange in wireless sensor networks and autonomous robots
An easy to use bluetooth scatternet protocol for fast data exchange in wireless sensor networks and autonomous robots

Mockel, R., Spröwitz, A., Maye, J., Ijspeert, A. J.

In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 2801-2806, IEEE, San Diego, CA, 2007 (inproceedings)

Abstract
We present a Bluetooth scatternet protocol (SNP) that provides the user with a serial link to all connected members in a transparent wireless Bluetooth network. By using only local decision making we can reduce the overhead of our scatternet protocol dramatically. We show how our SNP software layer simplifies a variety of tasks like the synchronization of central pattern generator controllers for actuators, collecting sensory data and building modular robot structures. The whole Bluetooth software stack including our new scatternet layer is implemented on a single Bluetooth and memory chip. To verify and characterize the SNP we provide data from experiments using real hardware instead of software simulation. This gives a realistic overview of the scatternet performance showing higher order effects that are difficult to be simulated correctly and guaranties the correct function of the SNP in real world applications.

dlg

DOI [BibTex]

2007


DOI [BibTex]