Header logo is


2018


Deep Reinforcement Learning for Event-Triggered Control
Deep Reinforcement Learning for Event-Triggered Control

Baumann, D., Zhu, J., Martius, G., Trimpe, S.

In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 943-950, 57th IEEE International Conference on Decision and Control (CDC), December 2018 (inproceedings)

al ics

arXiv PDF DOI Project Page Project Page [BibTex]

2018


arXiv PDF DOI Project Page Project Page [BibTex]


Efficient Encoding of Dynamical Systems through Local Approximations
Efficient Encoding of Dynamical Systems through Local Approximations

Solowjow, F., Mehrjou, A., Schölkopf, B., Trimpe, S.

In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 6073 - 6079 , Miami, Fl, USA, December 2018 (inproceedings)

ei ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Depth Control of Underwater Robots using Sliding Modes and Gaussian Process Regression
Depth Control of Underwater Robots using Sliding Modes and Gaussian Process Regression

Lima, G. S., Bessa, W. M., Trimpe, S.

In Proceeding of the 15th Latin American Robotics Symposium, João Pessoa, Brazil, 15th Latin American Robotics Symposium, November 2018 (inproceedings)

Abstract
The development of accurate control systems for underwater robotic vehicles relies on the adequate compensation for hydrodynamic effects. In this work, a new robust control scheme is presented for remotely operated underwater vehicles. In order to meet both robustness and tracking requirements, sliding mode control is combined with Gaussian process regression. The convergence properties of the closed-loop signals are analytically proven. Numerical results confirm the stronger improved performance of the proposed control scheme.

ics

[BibTex]

[BibTex]


Gait learning for soft microrobots controlled by light fields
Gait learning for soft microrobots controlled by light fields

Rohr, A. V., Trimpe, S., Marco, A., Fischer, P., Palagi, S.

In International Conference on Intelligent Robots and Systems (IROS) 2018, pages: 6199-6206, International Conference on Intelligent Robots and Systems 2018, October 2018 (inproceedings)

Abstract
Soft microrobots based on photoresponsive materials and controlled by light fields can generate a variety of different gaits. This inherent flexibility can be exploited to maximize their locomotion performance in a given environment and used to adapt them to changing environments. However, because of the lack of accurate locomotion models, and given the intrinsic variability among microrobots, analytical control design is not possible. Common data-driven approaches, on the other hand, require running prohibitive numbers of experiments and lead to very sample-specific results. Here we propose a probabilistic learning approach for light-controlled soft microrobots based on Bayesian Optimization (BO) and Gaussian Processes (GPs). The proposed approach results in a learning scheme that is highly data-efficient, enabling gait optimization with a limited experimental budget, and robust against differences among microrobot samples. These features are obtained by designing the learning scheme through the comparison of different GP priors and BO settings on a semisynthetic data set. The developed learning scheme is validated in microrobot experiments, resulting in a 115% improvement in a microrobot’s locomotion performance with an experimental budget of only 20 tests. These encouraging results lead the way toward self-adaptive microrobotic systems based on lightcontrolled soft microrobots and probabilistic learning control.

ics pf

arXiv IEEE Xplore DOI Project Page [BibTex]

arXiv IEEE Xplore DOI Project Page [BibTex]


no image
Learning-Based Robust Model Predictive Control with State-Dependent Uncertainty

Soloperto, R., Müller, M. A., Trimpe, S., Allgöwer, F.

In Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (NMPC), Madison, Wisconsin, USA, 6th IFAC Conference on Nonlinear Model Predictive Control, August 2018 (inproceedings)

ics

PDF [BibTex]

PDF [BibTex]


Probabilistic Recurrent State-Space Models
Probabilistic Recurrent State-Space Models

Doerr, A., Daniel, C., Schiegg, M., Nguyen-Tuong, D., Schaal, S., Toussaint, M., Trimpe, S.

In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), July 2018 (inproceedings)

Abstract
State-space models (SSMs) are a highly expressive model class for learning patterns in time series data and for system identification. Deterministic versions of SSMs (e.g., LSTMs) proved extremely successful in modeling complex time-series data. Fully probabilistic SSMs, however, unfortunately often prove hard to train, even for smaller problems. To overcome this limitation, we propose a scalable initialization and training algorithm based on doubly stochastic variational inference and Gaussian processes. In the variational approximation we propose in contrast to related approaches to fully capture the latent state temporal correlations to allow for robust training.

am ics

arXiv pdf Project Page [BibTex]

arXiv pdf Project Page [BibTex]


Event-triggered Learning for Resource-efficient Networked Control
Event-triggered Learning for Resource-efficient Networked Control

Solowjow, F., Baumann, D., Garcke, J., Trimpe, S.

In Proceedings of the American Control Conference (ACC), pages: 6506 - 6512, American Control Conference, June 2018 (inproceedings)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Learning from Outside the Viability Kernel: Why we Should Build Robots that can Fail with Grace
Learning from Outside the Viability Kernel: Why we Should Build Robots that can Fail with Grace

Heim, S., Sproewitz, A.

Proceedings of SIMPAR 2018, pages: 55-61, IEEE, 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), May 2018 (conference)

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in Hardware
Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in Hardware

Heim, S., Ruppert, F., Sarvestani, A., Sproewitz, A.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, pages: 5076-5081, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

Abstract
Learning instead of designing robot controllers can greatly reduce engineering effort required, while also emphasizing robustness. Despite considerable progress in simulation, applying learning directly in hardware is still challenging, in part due to the necessity to explore potentially unstable parameters. We explore the of concept shaping the reward landscape with training wheels; temporary modifications of the physical hardware that facilitate learning. We demonstrate the concept with a robot leg mounted on a boom learning to hop fast. This proof of concept embodies typical challenges such as instability and contact, while being simple enough to empirically map out and visualize the reward landscape. Based on our results we propose three criteria for designing effective training wheels for learning in robotics.

dlg

Video Youtube link (url) Project Page [BibTex]

Video Youtube link (url) Project Page [BibTex]


Evaluating Low-Power Wireless Cyber-Physical Systems
Evaluating Low-Power Wireless Cyber-Physical Systems

Baumann, D., Mager, F., Singh, H., Zimmerling, M., Trimpe, S.

In Proceedings of the IEEE Workshop on Benchmarking Cyber-Physical Networks and Systems (CPSBench), pages: 13-18, IEEE Workshop on Benchmarking Cyber-Physical Networks and Systems (CPSBench), April 2018 (inproceedings)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Enhanced Non-Steady Gliding Performance of the MultiMo-Bat through Optimal Airfoil Configuration and Control Strategy

Kim, H., Woodward, M. A., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1382-1388, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
L4: Practical loss-based stepsize adaptation for deep learning

Rolinek, M., Martius, G.

In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), pages: 6434-6444, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 2018 (inproceedings)

al

Github link (url) Project Page [BibTex]

Github link (url) Project Page [BibTex]


no image
Collectives of Spinning Mobile Microrobots for Navigation and Object Manipulation at the Air-Water Interface

Wang, W., Kishore, V., Koens, L., Lauga, E., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1-9, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


Systematic self-exploration of behaviors for robots in a dynamical systems framework
Systematic self-exploration of behaviors for robots in a dynamical systems framework

Pinneri, C., Martius, G.

In Proc. Artificial Life XI, pages: 319-326, MIT Press, Cambridge, MA, 2018 (inproceedings)

Abstract
One of the challenges of this century is to understand the neural mechanisms behind cognitive control and learning. Recent investigations propose biologically plausible synaptic mechanisms for self-organizing controllers, in the spirit of Hebbian learning. In particular, differential extrinsic plasticity (DEP) [Der and Martius, PNAS 2015], has proven to enable embodied agents to self-organize their individual sensorimotor development, and generate highly coordinated behaviors during their interaction with the environment. These behaviors are attractors of a dynamical system. In this paper, we use the DEP rule to generate attractors and we combine it with a “repelling potential” which allows the system to actively explore all its attractor behaviors in a systematic way. With a view to a self-determined exploration of goal-free behaviors, our framework enables switching between different motion patterns in an autonomous and sequential fashion. Our algorithm is able to recover all the attractor behaviors in a toy system and it is also effective in two simulated environments. A spherical robot discovers all its major rolling modes and a hexapod robot learns to locomote in 50 different ways in 30min.

al

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Endo-VMFuseNet: A Deep Visual-Magnetic Sensor Fusion Approach for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Gilbert, H. B., Sari, A. E., Soylu, U., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-7, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Endosensorfusion: Particle filtering-based multi-sensory data fusion with switching state-space model for endoscopic capsule robots

Turan, M., Almalioglu, Y., Gilbert, H., Araujo, H., Cemgil, T., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-8, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


Learning equations for extrapolation and control
Learning equations for extrapolation and control

Sahoo, S. S., Lampert, C. H., Martius, G.

In Proc. 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, 2018, 80, pages: 4442-4450, http://proceedings.mlr.press/v80/sahoo18a/sahoo18a.pdf, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, 2018 (inproceedings)

Abstract
We present an approach to identify concise equations from data using a shallow neural network approach. In contrast to ordinary black-box regression, this approach allows understanding functional relations and generalizing them from observed data to unseen parts of the parameter space. We show how to extend the class of learnable equations for a recently proposed equation learning network to include divisions, and we improve the learning and model selection strategy to be useful for challenging real-world data. For systems governed by analytical expressions, our method can in many cases identify the true underlying equation and extrapolate to unseen domains. We demonstrate its effectiveness by experiments on a cart-pendulum system, where only 2 random rollouts are required to learn the forward dynamics and successfully achieve the swing-up task.

al

Code Arxiv Poster Slides link (url) Project Page [BibTex]

Code Arxiv Poster Slides link (url) Project Page [BibTex]


Robust Affordable 3D Haptic Sensation via Learning Deformation Patterns
Robust Affordable 3D Haptic Sensation via Learning Deformation Patterns

Sun, H., Martius, G.

Proceedings International Conference on Humanoid Robots, pages: 846-853, IEEE, New York, NY, USA, 2018 IEEE-RAS International Conference on Humanoid Robots, 2018, Oral Presentation (conference)

Abstract
Haptic sensation is an important modality for interacting with the real world. This paper proposes a general framework of inferring haptic forces on the surface of a 3D structure from internal deformations using a small number of physical sensors instead of employing dense sensor arrays. Using machine learning techniques, we optimize the sensor number and their placement and are able to obtain high-precision force inference for a robotic limb using as few as 9 sensors. For the optimal and sparse placement of the measurement units (strain gauges), we employ data-driven methods based on data obtained by finite element simulation. We compare data-driven approaches with model-based methods relying on geometric distance and information criteria such as Entropy and Mutual Information. We validate our approach on a modified limb of the “Poppy” robot [1] and obtain 8 mm localization precision.

al

DOI Project Page [BibTex]

DOI Project Page [BibTex]

2003


no image
High aspect ratio polymer micro/nano-structure manufacturing using nanoembossing, nanomolding and directed self-assembly

Sitti, M.

In ASME 2003 International Mechanical Engineering Congress and Exposition, pages: 293-297, 2003 (inproceedings)

pi

[BibTex]

2003


[BibTex]


no image
Nsf workshop on future directions in nano-scale systems, dynamics and control

Sitti, M.

In Automatic Control Conference (ACC), 2003 (inproceedings)

pi

[BibTex]

[BibTex]


no image
3-D nano-fiber manufacturing by controlled pulling of liquid polymers using nano-probes

Nain, A. S., Sitti, M.

In Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, 1, pages: 60-63, 2003 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Manufacturing of two and three-dimensional micro/nanostructures by integrating optical tweezers with chemical assembly

Castelino, K., Satyanarayana, S., Sitti, M.

In Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, 1, pages: 56-59, 2003 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Synthetic gecko foot-hair micro/nano-structures for future wall-climbing robots

Sitti, M., Fearing, R. S.

In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on, 1, pages: 1164-1170, 2003 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Biomimetic propulsion for a swimming surgical micro-robot

Edd, J., Payen, S., Rubinsky, B., Stoller, M. L., Sitti, M.

In Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on, 3, pages: 2583-2588, 2003 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]

2002


no image
Nanomolding based fabrication of synthetic gecko foot-hairs

Sitti, M., Fearing, R. S.

In Nanotechnology, 2002. IEEE-NANO 2002. Proceedings of the 2002 2nd IEEE Conference on, pages: 137-140, 2002 (inproceedings)

pi

Project Page [BibTex]

2002


Project Page [BibTex]

1998


no image
Nano tele-manipulation using virtual reality interface

Sitti, M., Horiguchi, S., Hashimoto, H.

In Industrial Electronics, 1998. Proceedings. ISIE’98. IEEE International Symposium on, 1, pages: 171-176, 1998 (inproceedings)

pi

[BibTex]

1998


[BibTex]


no image
Tele-nanorobotics using atomic force microscope

Sitti, M., Hashimoto, H.

In Intelligent Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ International Conference on, 3, pages: 1739-1746, 1998 (inproceedings)

pi

[BibTex]

[BibTex]


no image
2D micro particle assembly using atomic force microscope

Sitti, M., Hirahara, K., Hashimoto, H.

In Micromechatronics and Human Science, 1998. MHS’98. Proceedings of the 1998 International Symposium on, pages: 143-148, 1998 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Macro to nano tele-manipulation through nanoelectromechanical systems

Sitti, M., Hashimoto, H.

In Industrial Electronics Society, 1998. IECON’98. Proceedings of the 24th Annual Conference of the IEEE, 1, pages: 98-103, 1998 (inproceedings)

pi

[BibTex]

[BibTex]

1995


no image
Visual tracking for moving multiple objects: an integration of vision and control

Sitti, M, Bozma, I, Denker, A

In Industrial Electronics, 1995. ISIE’95., Proceedings of the IEEE International Symposium on, 2, pages: 535-540, 1995 (inproceedings)

pi

[BibTex]

1995


[BibTex]