Header logo is


2020


FootTile: a Rugged Foot Sensor for Force and Center of Pressure Sensing in Soft Terrain
FootTile: a Rugged Foot Sensor for Force and Center of Pressure Sensing in Soft Terrain

Felix Ruppert, , Badri-Spröwitz, A.

In Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, International Conference on Robotics and Automation, May 2020 (inproceedings) Accepted

Abstract
In this paper, we present FootTile, a foot sensor for reaction force and center of pressure sensing in challenging terrain. We compare our sensor design to standard biomechanical devices, force plates and pressure plates. We show that FootTile can accurately estimate force and pressure distribution during legged locomotion. FootTile weighs 0.9g, has a sampling rate of 330 Hz, a footprint of 10×10 mm and can easily be adapted in sensor range to the required load case. In three experiments, we validate: first, the performance of the individual sensor, second an array of FootTiles for center of pressure sensing and third the ground reaction force estimation during locomotion in granular substrate. We then go on to show the accurate sensing capabilities of the waterproof sensor in liquid mud, as a showcase for real world rough terrain use.

dlg

Youtube1 Youtube2 Presentation link (url) [BibTex]

2020


Youtube1 Youtube2 Presentation link (url) [BibTex]


Electronics, Software and Analysis of a Bioinspired Sensorized Quadrupedal Robot
Electronics, Software and Analysis of a Bioinspired Sensorized Quadrupedal Robot

Petereit, R.

Technische Universität München, 2020 (mastersthesis)

dlg

[BibTex]

2007


An easy to use bluetooth scatternet protocol for fast data exchange in wireless sensor networks and autonomous robots
An easy to use bluetooth scatternet protocol for fast data exchange in wireless sensor networks and autonomous robots

Mockel, R., Spröwitz, A., Maye, J., Ijspeert, A. J.

In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 2801-2806, IEEE, San Diego, CA, 2007 (inproceedings)

Abstract
We present a Bluetooth scatternet protocol (SNP) that provides the user with a serial link to all connected members in a transparent wireless Bluetooth network. By using only local decision making we can reduce the overhead of our scatternet protocol dramatically. We show how our SNP software layer simplifies a variety of tasks like the synchronization of central pattern generator controllers for actuators, collecting sensory data and building modular robot structures. The whole Bluetooth software stack including our new scatternet layer is implemented on a single Bluetooth and memory chip. To verify and characterize the SNP we provide data from experiments using real hardware instead of software simulation. This gives a realistic overview of the scatternet performance showing higher order effects that are difficult to be simulated correctly and guaranties the correct function of the SNP in real world applications.

dlg

DOI [BibTex]

2007


DOI [BibTex]


no image
Phase behavior and effective interactions in colloidal suspensions

Grodon, C.

Universität Stuttgart, Stuttgart, 2007 (phdthesis)

icm

link (url) [BibTex]

link (url) [BibTex]


no image
The effect of capillary forces on adhesion of biological and artificial attachment devices

De Souza, E. J.

Universität Stuttgart, Stuttgart, 2007 (phdthesis)

icm

link (url) [BibTex]

link (url) [BibTex]


no image
Brownian dynamics in near surface flows

Almenar Egea, L.

Universität Stuttgart, Stuttgart, 2007 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Single lamella crystals of polyethylene accessible by catalytic emulsion-polymerization

Weber, C. H. M., Chiche, A., Krausch, G., Rosenfeldt, S., Ballauff, M., Goettker-Schnetmann, I., Tong, Q., Mecking, S., Harnau, L.

In Polymeric Materials: Science \& Engineering, 97, pages: 133-134, 2007 (inproceedings)

icm

[BibTex]

[BibTex]