Header logo is


2017


Spinal joint compliance and actuation in a simulated bounding quadruped robot
Spinal joint compliance and actuation in a simulated bounding quadruped robot

Pouya, S., Khodabakhsh, M., Sproewitz, A., Ijspeert, A.

{Autonomous Robots}, pages: 437–452, Kluwer Academic Publishers, Springer, Dordrecht, New York, NY, Febuary 2017 (article)

dlg

link (url) DOI Project Page [BibTex]

2017


link (url) DOI Project Page [BibTex]

2014


3D Traffic Scene Understanding from Movable Platforms
3D Traffic Scene Understanding from Movable Platforms

Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(5):1012-1025, published, IEEE, Los Alamitos, CA, May 2014 (article)

Abstract
In this paper, we present a novel probabilistic generative model for multi-object traffic scene understanding from movable platforms which reasons jointly about the 3D scene layout as well as the location and orientation of objects in the scene. In particular, the scene topology, geometry and traffic activities are inferred from short video sequences. Inspired by the impressive driving capabilities of humans, our model does not rely on GPS, lidar or map knowledge. Instead, it takes advantage of a diverse set of visual cues in the form of vehicle tracklets, vanishing points, semantic scene labels, scene flow and occupancy grids. For each of these cues we propose likelihood functions that are integrated into a probabilistic generative model. We learn all model parameters from training data using contrastive divergence. Experiments conducted on videos of 113 representative intersections show that our approach successfully infers the correct layout in a variety of very challenging scenarios. To evaluate the importance of each feature cue, experiments using different feature combinations are conducted. Furthermore, we show how by employing context derived from the proposed method we are able to improve over the state-of-the-art in terms of object detection and object orientation estimation in challenging and cluttered urban environments.

avg ps

pdf link (url) [BibTex]

2014


pdf link (url) [BibTex]


Roombots: A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot
Roombots: A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot

Spröwitz, A., Moeckel, R., Vespignani, M., Bonardi, S., Ijspeert, A. J.

{Robotics and Autonomous Systems}, 62(7):1016-1033, Elsevier, Amsterdam, 2014 (article)

Abstract
In this work we provide hands-on experience on designing and testing a self-reconfiguring modular robotic system, Roombots (RB), to be used among others for adaptive furniture. In the long term, we envision that RB can be used to create sets of furniture, such as stools, chairs and tables that can move in their environment and that change shape and functionality during the day. In this article, we present the first, incremental results towards that long term vision. We demonstrate locomotion and reconfiguration of single and metamodule RB over 3D surfaces, in a structured environment equipped with embedded connection ports. RB assemblies can move around in non-structured environments, by using rotational or wheel-like locomotion. We show a proof of concept for transferring a Roombots metamodule (two in-series coupled RB modules) from the non-structured environment back into the structured grid, by aligning the RB metamodule in an entrapment mechanism. Finally, we analyze the remaining challenges to master the full Roombots scenario, and discuss the impact on future Roombots hardware.

dlg

DOI [BibTex]

DOI [BibTex]


Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs
Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs

Spröwitz, A. T., Ajallooeian, M., Tuleu, A., Ijspeert, A. J.

Frontiers in Computational Neuroscience, 8(27):1-13, 2014 (article)

Abstract
In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95\% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2–3 primitives) than kinematic patterns from on-ground locomotion (νm4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware.

dlg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2013


Vision meets Robotics: The {KITTI} Dataset
Vision meets Robotics: The KITTI Dataset

Geiger, A., Lenz, P., Stiller, C., Urtasun, R.

International Journal of Robotics Research, 32(11):1231 - 1237 , Sage Publishing, September 2013 (article)

Abstract
We present a novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research. In total, we recorded 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation system. The scenarios are diverse, capturing real-world traffic situations and range from freeways over rural areas to inner-city scenes with many static and dynamic objects. Our data is calibrated, synchronized and timestamped, and we provide the rectified and raw image sequences. Our dataset also contains object labels in the form of 3D tracklets and we provide online benchmarks for stereo, optical flow, object detection and other tasks. This paper describes our recording platform, the data format and the utilities that we provide.

avg ps

pdf DOI [BibTex]

2013


pdf DOI [BibTex]


Towards Dynamic Trot Gait Locomotion: Design, Control, and Experiments with Cheetah-cub, a Compliant Quadruped Robot
Towards Dynamic Trot Gait Locomotion: Design, Control, and Experiments with Cheetah-cub, a Compliant Quadruped Robot

Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., Ijspeert, A. J.

{The International Journal of Robotics Research}, 32(8):932-950, Sage Publications, Inc., Cambridge, MA, 2013 (article)

Abstract
We present the design of a novel compliant quadruped robot, called Cheetah-cub, and a series of locomotion experiments with fast trotting gaits. The robot’s leg configuration is based on a spring-loaded, pantograph mechanism with multiple segments. A dedicated open-loop locomotion controller was derived and implemented. Experiments were run in simulation and in hardware on flat terrain and with a step down, demonstrating the robot’s self-stabilizing properties. The robot reached a running trot with short flight phases with a maximum Froude number of FR = 1.30, or 6.9 body lengths per second. Morphological parameters such as the leg design also played a role. By adding distal in-series elasticity, self- stability and maximum robot speed improved. Our robot has several advantages, especially when compared with larger and stiffer quadruped robot designs. (1) It is, to the best of the authors’ knowledge, the fastest of all quadruped robots below 30 kg (in terms of Froude number and body lengths per second). (2) It shows self-stabilizing behavior over a large range of speeds with open-loop control. (3) It is lightweight, compact, and electrically powered. (4) It is cheap, easy to reproduce, robust, and safe to handle. This makes it an excellent tool for research of multi-segment legs in quadruped robots.

dlg

Youtube1 Youtube2 Youtube3 Youtube4 Youtube5 DOI Project Page [BibTex]

Youtube1 Youtube2 Youtube3 Youtube4 Youtube5 DOI Project Page [BibTex]


Horse-Like Walking, Trotting, and Galloping derived from Kinematic Motion Primitives (kMPs) and their Application to Walk/Trot Transitions in a Compliant Quadruped Robot
Horse-Like Walking, Trotting, and Galloping derived from Kinematic Motion Primitives (kMPs) and their Application to Walk/Trot Transitions in a Compliant Quadruped Robot

Moro, F., Spröwitz, A., Tuleu, A., Vespignani, M., Tsagakiris, N. G., Ijspeert, A. J., Caldwell, D. G.

Biological Cybernetics, 107(3):309-320, 2013 (article)

Abstract
This manuscript proposes a method to directly transfer the features of horse walking, trotting, and galloping to a quadruped robot, with the aim of creating a much more natural (horse-like) locomotion profile. A principal component analysis on horse joint trajectories shows that walk, trot, and gallop can be described by a set of four kinematic Motion Primitives (kMPs). These kMPs are used to generate valid, stable gaits that are tested on a compliant quadruped robot. Tests on the effects of gait frequency scaling as follows: results indicate a speed optimal walking frequency around 3.4 Hz, and an optimal trotting frequency around 4 Hz. Following, a criterion to synthesize gait transitions is proposed, and the walk/trot transitions are successfully tested on the robot. The performance of the robot when the transitions are scaled in frequency is evaluated by means of roll and pitch angle phase plots.

dlg

DOI [BibTex]

DOI [BibTex]

2011


no image
Aerial righting reflexes in flightless animals

Jusufi, A., Zeng, Y., Full, R., Dudley, R.

Integ. Comp. Biol. , 2011 (article)

bio

[BibTex]

2011


[BibTex]


Roombots: Reconfigurable Robots for Adaptive Furniture
Roombots: Reconfigurable Robots for Adaptive Furniture

Spröwitz, A., Pouya, S., Bonardi, S., van den Kieboom, J., Möckel, R., Billard, A., Dillenbourg, P., Ijspeert, A.

Computational Intelligence Magazine, IEEE, 5(3):20-32, 2010 (article)

Abstract
Imagine a world in which our furniture moves around like legged robots, interacts with us, and changes shape and function during the day according to our needs. This is the long term vision we have in the Roombots project. To work towards this dream, we are developing modular robotic modules that have rotational degrees of freedom for locomotion as well as active connection mechanisms for runtime reconfiguration. A piece of furniture, e.g. a stool, will thus be composed of several modules that activate their rotational joints together to implement locomotor gaits, and will be able to change shape, e.g. transforming into a chair, by sequences of attachments and detachments of modules. In this article, we firstly present the project and the hardware we are currently developing. We explore how reconfiguration from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using metamodules-two Roombots modules connected serially-that use broadcast signals and connections to a structured ground to collectively build desired structures without the need of a centralized planner. We then present how locomotion controllers can be implemented in a distributed system of coupled oscillators-one per degree of freedom-similarly to the concept of central pattern generators (CPGs) found in the spinal cord of vertebrate animals. The CPGs are based on coupled phase oscillators to ensure synchronized behavior and have different output filters to allow switching between oscillations and rotations. A stochastic optimization algorithm is used to explore optimal CPG configurations for different simulated Roombots structures.

dlg

DOI [BibTex]

DOI [BibTex]