Header logo is



no image
A Continuous-time Perspective for Modeling Acceleration in Riemannian Optimization

F Alimisis, F., Orvieto, A., Becigneul, G., Lucchi, A.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), June 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
A Kernel Mean Embedding Approach to Reducing Conservativeness in Stochastic Programming and Control

Zhu, J., Diehl, M., Schölkopf, B.

2nd Annual Conference on Learning for Dynamics and Control (L4DC), June 2020 (conference) Accepted

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Mixed-curvature Variational Autoencoders

Skopek, O., Ganea, O., Becigneul, G.

8th International Conference on Learning Representations (ICLR), April 2020 (conference) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

8th International Conference on Learning Representations (ICLR) , April 2020, *equal contribution (conference) Accepted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

ei ps

arXiv [BibTex]

arXiv [BibTex]


no image
More Powerful Selective Kernel Tests for Feature Selection

Lim, J. N., Yamada, M., Jitkrittum, W., Terada, Y., Matsui, S., Shimodaira, H.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 2020 (conference) To be published

ei

arXiv [BibTex]

arXiv [BibTex]


Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image
Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image

Paschalidou, D., Gool, L., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
Humans perceive the 3D world as a set of distinct objects that are characterized by various low-level (geometry, reflectance) and high-level (connectivity, adjacency, symmetry) properties. Recent methods based on convolutional neural networks (CNNs) demonstrated impressive progress in 3D reconstruction, even when using a single 2D image as input. However, the majority of these methods focuses on recovering the local 3D geometry of an object without considering its part-based decomposition or relations between parts. We address this challenging problem by proposing a novel formulation that allows to jointly recover the geometry of a 3D object as a set of primitives as well as their latent hierarchical structure without part-level supervision. Our model recovers the higher level structural decomposition of various objects in the form of a binary tree of primitives, where simple parts are represented with fewer primitives and more complex parts are modeled with more components. Our experiments on the ShapeNet and D-FAUST datasets demonstrate that considering the organization of parts indeed facilitates reasoning about 3D geometry.

avg

pdf suppmat Video Project Page [BibTex]

pdf suppmat Video Project Page [BibTex]


no image
Computationally Tractable Riemannian Manifolds for Graph Embeddings

Cruceru, C., Becigneul, G., Ganea, O.

37th International Conference on Machine Learning (ICML), 2020 (conference) Submitted

ei

[BibTex]

[BibTex]


Towards Unsupervised Learning of Generative Models for 3D Controllable Image Synthesis
Towards Unsupervised Learning of Generative Models for 3D Controllable Image Synthesis

Liao, Y., Schwarz, K., Mescheder, L., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
In recent years, Generative Adversarial Networks have achieved impressive results in photorealistic image synthesis. This progress nurtures hopes that one day the classical rendering pipeline can be replaced by efficient models that are learned directly from images. However, current image synthesis models operate in the 2D domain where disentangling 3D properties such as camera viewpoint or object pose is challenging. Furthermore, they lack an interpretable and controllable representation. Our key hypothesis is that the image generation process should be modeled in 3D space as the physical world surrounding us is intrinsically three-dimensional. We define the new task of 3D controllable image synthesis and propose an approach for solving it by reasoning both in 3D space and in the 2D image domain. We demonstrate that our model is able to disentangle latent 3D factors of simple multi-object scenes in an unsupervised fashion from raw images. Compared to pure 2D baselines, it allows for synthesizing scenes that are consistent wrt. changes in viewpoint or object pose. We further evaluate various 3D representations in terms of their usefulness for this challenging task.

avg

pdf suppmat Video Project Page [BibTex]

pdf suppmat Video Project Page [BibTex]


no image
Practical Accelerated Optimization on Riemannian Manifolds

F Alimisis, F., Orvieto, A., Becigneul, G., Lucchi, A.

37th International Conference on Machine Learning (ICML), 2020 (conference) Submitted

ei

[BibTex]

[BibTex]


Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving
Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving

Prakash, A., Behl, A., Ohn-Bar, E., Chitta, K., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
Data aggregation techniques can significantly improve vision-based policy learning within a training environment, e.g., learning to drive in a specific simulation condition. However, as on-policy data is sequentially sampled and added in an iterative manner, the policy can specialize and overfit to the training conditions. For real-world applications, it is useful for the learned policy to generalize to novel scenarios that differ from the training conditions. To improve policy learning while maintaining robustness when training end-to-end driving policies, we perform an extensive analysis of data aggregation techniques in the CARLA environment. We demonstrate how the majority of them have poor generalization performance, and develop a novel approach with empirically better generalization performance compared to existing techniques. Our two key ideas are (1) to sample critical states from the collected on-policy data based on the utility they provide to the learned policy in terms of driving behavior, and (2) to incorporate a replay buffer which progressively focuses on the high uncertainty regions of the policy's state distribution. We evaluate the proposed approach on the CARLA NoCrash benchmark, focusing on the most challenging driving scenarios with dense pedestrian and vehicle traffic. Our approach improves driving success rate by 16% over state-of-the-art, achieving 87% of the expert performance while also reducing the collision rate by an order of magnitude without the use of any additional modality, auxiliary tasks, architectural modifications or reward from the environment.

avg

pdf suppmat Video Project Page [BibTex]

pdf suppmat Video Project Page [BibTex]


no image
Constant Curvature Graph Convolutional Networks

Bachmann*, G., Becigneul*, G., Ganea, O.

37th International Conference on Machine Learning (ICML), 2020, *equal contribution (conference) Submitted

ei

[BibTex]

[BibTex]


Learning Situational Driving
Learning Situational Driving

Ohn-Bar, E., Prakash, A., Behl, A., Chitta, K., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
Human drivers have a remarkable ability to drive in diverse visual conditions and situations, e.g., from maneuvering in rainy, limited visibility conditions with no lane markings to turning in a busy intersection while yielding to pedestrians. In contrast, we find that state-of-the-art sensorimotor driving models struggle when encountering diverse settings with varying relationships between observation and action. To generalize when making decisions across diverse conditions, humans leverage multiple types of situation-specific reasoning and learning strategies. Motivated by this observation, we develop a framework for learning a situational driving policy that effectively captures reasoning under varying types of scenarios. Our key idea is to learn a mixture model with a set of policies that can capture multiple driving modes. We first optimize the mixture model through behavior cloning, and show it to result in significant gains in terms of driving performance in diverse conditions. We then refine the model by directly optimizing for the driving task itself, i.e., supervised with the navigation task reward. Our method is more scalable than methods assuming access to privileged information, e.g., perception labels, as it only assumes demonstration and reward-based supervision. We achieve over 98% success rate on the CARLA driving benchmark as well as state-of-the-art performance on a newly introduced generalization benchmark.

avg

pdf suppmat Video Project Page [BibTex]

pdf suppmat Video Project Page [BibTex]


On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner
On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner

Schmitt, C., Donne, S., Riegler, G., Koltun, V., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
We propose a novel formulation for joint recovery of camera pose, object geometry and spatially-varying BRDF. The input to our approach is a sequence of RGB-D images captured by a mobile, hand-held scanner that actively illuminates the scene with point light sources. Compared to previous works that jointly estimate geometry and materials from a hand-held scanner, we formulate this problem using a single objective function that can be minimized using off-the-shelf gradient-based solvers. By integrating material clustering as a differentiable operation into the optimization process, we avoid pre-processing heuristics and demonstrate that our model is able to determine the correct number of specular materials independently. We provide a study on the importance of each component in our formulation and on the requirements of the initial geometry. We show that optimizing over the poses is crucial for accurately recovering fine details and that our approach naturally results in a semantically meaningful material segmentation.

avg

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision
Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision

Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020 (inproceedings)

Abstract
Learning-based 3D reconstruction methods have shown impressive results. However, most methods require 3D supervision which is often hard to obtain for real-world datasets. Recently, several works have proposed differentiable rendering techniques to train reconstruction models from RGB images. Unfortunately, these approaches are currently restricted to voxel- and mesh-based representations, suffering from discretization or low resolution. In this work, we propose a differentiable rendering formulation for implicit shape and texture representations. Implicit representations have recently gained popularity as they represent shape and texture continuously. Our key insight is that depth gradients can be derived analytically using the concept of implicit differentiation. This allows us to learn implicit shape and texture representations directly from RGB images. We experimentally show that our single-view reconstructions rival those learned with full 3D supervision. Moreover, we find that our method can be used for multi-view 3D reconstruction, directly resulting in watertight meshes.

avg

pdf suppmat Video Project Page [BibTex]

pdf suppmat Video Project Page [BibTex]

2019


no image
Selecting causal brain features with a single conditional independence test per feature

Mastakouri, A., Schölkopf, B., Janzing, D.

Advances in Neural Information Processing Systems 32, pages: 12532-12543, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

2019


link (url) [BibTex]


no image
Practical and Consistent Estimation of f-Divergences

Rubenstein, P. K., Bousquet, O., Djolonga, J., Riquelme, C., Tolstikhin, I.

Advances in Neural Information Processing Systems 32, pages: 4072-4082, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Invert to Learn to Invert

Putzky, P., M., W.

Advances in Neural Information Processing Systems 32, pages: 444-454, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Limitations of the empirical Fisher approximation for natural gradient descent

Kunstner, F., Hennig, P., Balles, L.

Advances in Neural Information Processing Systems 32, pages: 4158-4169, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei pn

link (url) [BibTex]

link (url) [BibTex]


no image
On the Fairness of Disentangled Representations

Locatello, F., Abbati, G., Rainforth, T., Bauer, S., Schölkopf, B., Bachem, O.

Advances in Neural Information Processing Systems 32, pages: 14584-14597, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Model to Search for Synthesizable Molecules

Bradshaw, J., Paige, B., Kusner, M. J., Segler, M., Hernández-Lobato, J. M.

Advances in Neural Information Processing Systems 32, pages: 7935-7947, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset

Gondal, M. W., Wuthrich, M., Miladinovic, D., Locatello, F., Breidt, M., Volchkov, V., Akpo, J., Bachem, O., Schölkopf, B., Bauer, S.

Advances in Neural Information Processing Systems 32, pages: 15714-15725, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei sf am

link (url) [BibTex]

link (url) [BibTex]


no image
Kernel Stein Tests for Multiple Model Comparison

Lim, J. N., Yamada, M., Schölkopf, B., Jitkrittum, W.

Advances in Neural Information Processing Systems 32, pages: 2240-2250, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Convergence Guarantees for Adaptive Bayesian Quadrature Methods

Kanagawa, M., Hennig, P.

Advances in Neural Information Processing Systems 32, pages: 6234-6245, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei pn

link (url) [BibTex]

link (url) [BibTex]


no image
Are Disentangled Representations Helpful for Abstract Visual Reasoning?

van Steenkiste, S., Locatello, F., Schmidhuber, J., Bachem, O.

Advances in Neural Information Processing Systems 32, pages: 14222-14235, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Perceiving the arrow of time in autoregressive motion

Meding, K., Janzing, D., Schölkopf, B., Wichmann, F. A.

Advances in Neural Information Processing Systems 32, pages: 2303-2314, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Fisher Efficient Inference of Intractable Models

Liu, S., Kanamori, T., Jitkrittum, W., Chen, Y.

Advances in Neural Information Processing Systems 32, pages: 8790-8800, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Stochastic Frank-Wolfe for Composite Convex Minimization

Locatello, F., Yurtsever, A., Fercoq, O., Cevher, V.

Advances in Neural Information Processing Systems 32, pages: 14246-14256, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Attacking Optical Flow
Attacking Optical Flow

Ranjan, A., Janai, J., Geiger, A., Black, M. J.

In International Conference on Computer Vision, November 2019 (inproceedings)

Abstract
Deep neural nets achieve state-of-the-art performance on the problem of optical flow estimation. Since optical flow is used in several safety-critical applications like self-driving cars, it is important to gain insights into the robustness of those techniques. Recently, it has been shown that adversarial attacks easily fool deep neural networks to misclassify objects. The robustness of optical flow networks to adversarial attacks, however, has not been studied so far. In this paper, we extend adversarial patch attacks to optical flow networks and show that such attacks can compromise their performance. We show that corrupting a small patch of less than 1% of the image size can significantly affect optical flow estimates. Our attacks lead to noisy flow estimates that extend significantly beyond the region of the attack, in many cases even completely erasing the motion of objects in the scene. While networks using an encoder-decoder architecture are very sensitive to these attacks, we found that networks using a spatial pyramid architecture are less affected. We analyse the success and failure of attacking both architectures by visualizing their feature maps and comparing them to classical optical flow techniques which are robust to these attacks. We also demonstrate that such attacks are practical by placing a printed pattern into real scenes.

avg ps

Video Project Page Paper Supplementary Material link (url) [BibTex]

Video Project Page Paper Supplementary Material link (url) [BibTex]


no image
Neural Signatures of Motor Skill in the Resting Brain

Ozdenizci, O., Meyer, T., Wichmann, F., Peters, J., Schölkopf, B., Cetin, M., Grosse-Wentrup, M.

Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC 2019), October 2019 (conference) Accepted

ei

[BibTex]

[BibTex]


Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics
Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics

Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.

International Conference on Computer Vision, October 2019 (conference)

Abstract
Deep learning based 3D reconstruction techniques have recently achieved impressive results. However, while state-of-the-art methods are able to output complex 3D geometry, it is not clear how to extend these results to time-varying topologies. Approaches treating each time step individually lack continuity and exhibit slow inference, while traditional 4D reconstruction methods often utilize a template model or discretize the 4D space at fixed resolution. In this work, we present Occupancy Flow, a novel spatio-temporal representation of time-varying 3D geometry with implicit correspondences. Towards this goal, we learn a temporally and spatially continuous vector field which assigns a motion vector to every point in space and time. In order to perform dense 4D reconstruction from images or sparse point clouds, we combine our method with a continuous 3D representation. Implicitly, our model yields correspondences over time, thus enabling fast inference while providing a sound physical description of the temporal dynamics. We show that our method can be used for interpolation and reconstruction tasks, and demonstrate the accuracy of the learned correspondences. We believe that Occupancy Flow is a promising new 4D representation which will be useful for a variety of spatio-temporal reconstruction tasks.

avg

pdf poster suppmat code Project page video blog [BibTex]


Texture Fields: Learning Texture Representations in Function Space
Texture Fields: Learning Texture Representations in Function Space

Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., Geiger, A.

International Conference on Computer Vision, October 2019 (conference)

Abstract
In recent years, substantial progress has been achieved in learning-based reconstruction of 3D objects. At the same time, generative models were proposed that can generate highly realistic images. However, despite this success in these closely related tasks, texture reconstruction of 3D objects has received little attention from the research community and state-of-the-art methods are either limited to comparably low resolution or constrained experimental setups. A major reason for these limitations is that common representations of texture are inefficient or hard to interface for modern deep learning techniques. In this paper, we propose Texture Fields, a novel texture representation which is based on regressing a continuous 3D function parameterized with a neural network. Our approach circumvents limiting factors like shape discretization and parameterization, as the proposed texture representation is independent of the shape representation of the 3D object. We show that Texture Fields are able to represent high frequency texture and naturally blend with modern deep learning techniques. Experimentally, we find that Texture Fields compare favorably to state-of-the-art methods for conditional texture reconstruction of 3D objects and enable learning of probabilistic generative models for texturing unseen 3D models. We believe that Texture Fields will become an important building block for the next generation of generative 3D models.

avg

pdf suppmat video poster blog Project Page [BibTex]


no image
Beta Power May Mediate the Effect of Gamma-TACS on Motor Performance

Mastakouri, A., Schölkopf, B., Grosse-Wentrup, M.

Engineering in Medicine and Biology Conference (EMBC), July 2019 (conference) Accepted

ei

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
Coordinating Users of Shared Facilities via Data-driven Predictive Assistants and Game Theory

Geiger, P., Besserve, M., Winkelmann, J., Proissl, C., Schölkopf, B.

Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 49, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The Sensitivity of Counterfactual Fairness to Unmeasured Confounding

Kilbertus, N., Ball, P. J., Kusner, M. J., Weller, A., Silva, R.

Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 213, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
The Incomplete Rosetta Stone problem: Identifiability results for Multi-view Nonlinear ICA

Gresele*, L., Rubenstein*, P. K., Mehrjou, A., Locatello, F., Schölkopf, B.

Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 53, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning

Peharz, R., Vergari, A., Stelzner, K., Molina, A., Shao, X., Trapp, M., Kersting, K., Ghahramani, Z.

Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 124, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Taking a Deeper Look at the Inverse Compositional Algorithm
Taking a Deeper Look at the Inverse Compositional Algorithm

Lv, Z., Dellaert, F., Rehg, J. M., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
In this paper, we provide a modern synthesis of the classic inverse compositional algorithm for dense image alignment. We first discuss the assumptions made by this well-established technique, and subsequently propose to relax these assumptions by incorporating data-driven priors into this model. More specifically, we unroll a robust version of the inverse compositional algorithm and replace multiple components of this algorithm using more expressive models whose parameters we train in an end-to-end fashion from data. Our experiments on several challenging 3D rigid motion estimation tasks demonstrate the advantages of combining optimization with learning-based techniques, outperforming the classic inverse compositional algorithm as well as data-driven image-to-pose regression approaches.

avg

pdf suppmat Video Project Page Poster [BibTex]

pdf suppmat Video Project Page Poster [BibTex]


no image
Kernel Mean Matching for Content Addressability of GANs

Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 3140-3151, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019, *equal contribution (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., Bachem, O.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 4114-4124, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


Local Temporal Bilinear Pooling for Fine-grained Action Parsing
Local Temporal Bilinear Pooling for Fine-grained Action Parsing

Zhang, Y., Tang, S., Muandet, K., Jarvers, C., Neumann, H.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Fine-grained temporal action parsing is important in many applications, such as daily activity understanding, human motion analysis, surgical robotics and others requiring subtle and precise operations in a long-term period. In this paper we propose a novel bilinear pooling operation, which is used in intermediate layers of a temporal convolutional encoder-decoder net. In contrast to other work, our proposed bilinear pooling is learnable and hence can capture more complex local statistics than the conventional counterpart. In addition, we introduce exact lower-dimension representations of our bilinear forms, so that the dimensionality is reduced with neither information loss nor extra computation. We perform intensive experiments to quantitatively analyze our model and show the superior performances to other state-of-the-art work on various datasets.

ei ps

Code video demo pdf link (url) [BibTex]

Code video demo pdf link (url) [BibTex]


MOTS: Multi-Object Tracking and Segmentation
MOTS: Multi-Object Tracking and Segmentation

Voigtlaender, P., Krause, M., Osep, A., Luiten, J., Sekar, B. B. G., Geiger, A., Leibe, B.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
This paper extends the popular task of multi-object tracking to multi-object tracking and segmentation (MOTS). Towards this goal, we create dense pixel-level annotations for two existing tracking datasets using a semi-automatic annotation procedure. Our new annotations comprise 65,213 pixel masks for 977 distinct objects (cars and pedestrians) in 10,870 video frames. For evaluation, we extend existing multi-object tracking metrics to this new task. Moreover, we propose a new baseline method which jointly addresses detection, tracking, and segmentation with a single convolutional network. We demonstrate the value of our datasets by achieving improvements in performance when training on MOTS annotations. We believe that our datasets, metrics and baseline will become a valuable resource towards developing multi-object tracking approaches that go beyond 2D bounding boxes.

avg

pdf suppmat Project Page Poster Video Project Page [BibTex]

pdf suppmat Project Page Poster Video Project Page [BibTex]


PointFlowNet: Learning Representations for Rigid Motion Estimation from Point Clouds
PointFlowNet: Learning Representations for Rigid Motion Estimation from Point Clouds

Behl, A., Paschalidou, D., Donne, S., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Despite significant progress in image-based 3D scene flow estimation, the performance of such approaches has not yet reached the fidelity required by many applications. Simultaneously, these applications are often not restricted to image-based estimation: laser scanners provide a popular alternative to traditional cameras, for example in the context of self-driving cars, as they directly yield a 3D point cloud. In this paper, we propose to estimate 3D motion from such unstructured point clouds using a deep neural network. In a single forward pass, our model jointly predicts 3D scene flow as well as the 3D bounding box and rigid body motion of objects in the scene. While the prospect of estimating 3D scene flow from unstructured point clouds is promising, it is also a challenging task. We show that the traditional global representation of rigid body motion prohibits inference by CNNs, and propose a translation equivariant representation to circumvent this problem. For training our deep network, a large dataset is required. Because of this, we augment real scans from KITTI with virtual objects, realistically modeling occlusions and simulating sensor noise. A thorough comparison with classic and learning-based techniques highlights the robustness of the proposed approach.

avg

pdf suppmat Project Page Poster Video [BibTex]

pdf suppmat Project Page Poster Video [BibTex]


no image
Projections for Approximate Policy Iteration Algorithms

Akrour, R., Pajarinen, J., Peters, J., Neumann, G.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 181-190, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Generate Semantically Similar Images with Kernel Mean Matching

Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.

6th Workshop Women in Computer Vision (WiCV) (oral presentation), June 2019, *equal contribution (conference)

ei

[BibTex]

[BibTex]


Connecting the Dots: Learning Representations for Active Monocular Depth Estimation
Connecting the Dots: Learning Representations for Active Monocular Depth Estimation

Riegler, G., Liao, Y., Donne, S., Koltun, V., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
We propose a technique for depth estimation with a monocular structured-light camera, \ie, a calibrated stereo set-up with one camera and one laser projector. Instead of formulating the depth estimation via a correspondence search problem, we show that a simple convolutional architecture is sufficient for high-quality disparity estimates in this setting. As accurate ground-truth is hard to obtain, we train our model in a self-supervised fashion with a combination of photometric and geometric losses. Further, we demonstrate that the projected pattern of the structured light sensor can be reliably separated from the ambient information. This can then be used to improve depth boundaries in a weakly supervised fashion by modeling the joint statistics of image and depth edges. The model trained in this fashion compares favorably to the state-of-the-art on challenging synthetic and real-world datasets. In addition, we contribute a novel simulator, which allows to benchmark active depth prediction algorithms in controlled conditions.

avg

pdf suppmat Poster Project Page [BibTex]

pdf suppmat Poster Project Page [BibTex]


no image
Switching Linear Dynamics for Variational Bayes Filtering

Becker-Ehmck, P., Peters, J., van der Smagt, P.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 553-562, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Learning Non-volumetric Depth Fusion using Successive Reprojections
Learning Non-volumetric Depth Fusion using Successive Reprojections

Donne, S., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Given a set of input views, multi-view stereopsis techniques estimate depth maps to represent the 3D reconstruction of the scene; these are fused into a single, consistent, reconstruction -- most often a point cloud. In this work we propose to learn an auto-regressive depth refinement directly from data. While deep learning has improved the accuracy and speed of depth estimation significantly, learned MVS techniques remain limited to the planesweeping paradigm. We refine a set of input depth maps by successively reprojecting information from neighbouring views to leverage multi-view constraints. Compared to learning-based volumetric fusion techniques, an image-based representation allows significantly more detailed reconstructions; compared to traditional point-based techniques, our method learns noise suppression and surface completion in a data-driven fashion. Due to the limited availability of high-quality reconstruction datasets with ground truth, we introduce two novel synthetic datasets to (pre-)train our network. Our approach is able to improve both the output depth maps and the reconstructed point cloud, for both learned and traditional depth estimation front-ends, on both synthetic and real data.

avg

pdf suppmat Project Page Video Poster blog [BibTex]

pdf suppmat Project Page Video Poster blog [BibTex]


no image
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness

Suter, R., Miladinovic, D., Schölkopf, B., Bauer, S.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 6056-6065, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]