Header logo is


2018


Method and device for reversibly attaching a phase changing metal to an object
Method and device for reversibly attaching a phase changing metal to an object

Zhou Ye, G. Z. L. M. S.

US Patent Application US 2018/0021892 A1, January 2018 (patent)

Abstract
A method for reversibly attaching a phase changing metal to an object, the method comprising the steps of: providing a substrate having at least one surface at which the phase changing metal is attached, heating the phase changing metal above a phase changing temperature at which the phase changing metal changes its phase from solid to liquid, bringing the phase changing metal, when the phase changing metal is in the liquid phase or before the phase changing metal is brought into the liquid phase, into contact with the object, permitting the phase changing metal to cool below the phase changing temperature, whereby the phase changing metal becomes solid and the object and the phase changing metal become attached to each other, reheating the phase changing metal above the phase changing temperature to liquefy the phase changing metal, and removing the substrate from the object, with the phase changing metal separating from the object and remaining with the substrate.

pi

US Patent Application Database US Patent Application (PDF) [BibTex]


Method of fabricating a shape-changeable magentic member, method of producing a shape changeable magnetic member and shape changeable magnetic member
Method of fabricating a shape-changeable magentic member, method of producing a shape changeable magnetic member and shape changeable magnetic member

Guo Zhan Lum, Z. Y. M. S.

US Patent Application US 2018/0012693 A1, January 2018 (patent)

Abstract
The present invention relates to a method of fabricating a shape-changeable magnetic member comprising a plurality of segments with each segment being able to be magnetized with a desired magnitude and orientation of magnetization, to a method of producing a shape changeable magnetic member composed of a plurality of segments and to a shape changeable magnetic member.

pi

US Patent Application Database US Patent Application (PDF) [BibTex]

2011


no image
Automated Control of AFM Based Nanomanipulation

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 237-311, Springer Berlin Heidelberg, 2011 (incollection)

pi

[BibTex]

2011


[BibTex]


no image
Teleoperation Based AFM Manipulation Control

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 145-235, Springer Berlin Heidelberg, 2011 (incollection)

pi

[BibTex]

[BibTex]


no image
Descriptions and challenges of AFM based nanorobotic systems

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 13-29, Springer Berlin Heidelberg, 2011 (incollection)

pi

[BibTex]

[BibTex]


no image
Applications of AFM Based Nanorobotic Systems

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 313-342, Springer Berlin Heidelberg, 2011 (incollection)

pi

[BibTex]

[BibTex]


no image
Nanomechanics of AFM based nanomanipulation

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 87-143, Springer Berlin Heidelberg, 2011 (incollection)

pi

[BibTex]

[BibTex]


no image
Instrumentation Issues of an AFM Based Nanorobotic System

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 31-86, Springer Berlin Heidelberg, 2011 (incollection)

pi

[BibTex]

[BibTex]

2005


no image
Geckobot and waalbot: Small-scale wall climbing robots

Unver, O., Murphy, M., Sitti, M.

In Infotech@ Aerospace, pages: 6940, 2005 (incollection)

pi

[BibTex]

2005


[BibTex]

1996


no image
From isolation to cooperation: An alternative of a system of experts

Schaal, S., Atkeson, C. G.

In Advances in Neural Information Processing Systems 8, pages: 605-611, (Editors: Touretzky, D. S.;Mozer, M. C.;Hasselmo, M. E.), MIT Press, Cambridge, MA, 1996, clmc (inbook)

Abstract
We introduce a constructive, incremental learning system for regression problems that models data by means of locally linear experts. In contrast to other approaches, the experts are trained independently and do not compete for data during learning. Only when a prediction for a query is required do the experts cooperate by blending their individual predictions. Each expert is trained by minimizing a penalized local cross validation error using second order methods. In this way, an expert is able to adjust the size and shape of the receptive field in which its predictions are valid, and also to adjust its bias on the importance of individual input dimensions. The size and shape adjustment corresponds to finding a local distance metric, while the bias adjustment accomplishes local dimensionality reduction. We derive asymptotic results for our method. In a variety of simulations we demonstrate the properties of the algorithm with respect to interference, learning speed, prediction accuracy, feature detection, and task oriented incremental learning. 

am

link (url) [BibTex]

1996


link (url) [BibTex]