Header logo is


2008


Thumb xl learningflow
Learning Optical Flow

Sun, D., Roth, S., Lewis, J., Black, M. J.

In European Conf. on Computer Vision, ECCV, 5304, pages: 83-97, LNCS, (Editors: Forsyth, D. and Torr, P. and Zisserman, A.), Springer-Verlag, October 2008 (inproceedings)

Abstract
Assumptions of brightness constancy and spatial smoothness underlie most optical flow estimation methods. In contrast to standard heuristic formulations, we learn a statistical model of both brightness constancy error and the spatial properties of optical flow using image sequences with associated ground truth flow fields. The result is a complete probabilistic model of optical flow. Specifically, the ground truth enables us to model how the assumption of brightness constancy is violated in naturalistic sequences, resulting in a probabilistic model of "brightness inconstancy". We also generalize previous high-order constancy assumptions, such as gradient constancy, by modeling the constancy of responses to various linear filters in a high-order random field framework. These filters are free variables that can be learned from training data. Additionally we study the spatial structure of the optical flow and how motion boundaries are related to image intensity boundaries. Spatial smoothness is modeled using a Steerable Random Field, where spatial derivatives of the optical flow are steered by the image brightness structure. These models provide a statistical motivation for previous methods and enable the learning of all parameters from training data. All proposed models are quantitatively compared on the Middlebury flow dataset.

ps

pdf Springerlink version [BibTex]

2008


pdf Springerlink version [BibTex]


no image
Probabilistic Roadmap Method and Real Time Gait Changing Technique Implementation for Travel Time Optimization on a Designed Six-legged Robot

Ahmad, A., Dhang, N.

In pages: 1-5, 39th International Symposium on Robotics (ISR), October 2008 (inproceedings)

Abstract
This paper presents design and development of a six legged robot with a total of 12 degrees of freedom, two in each limb and then an implementation of 'obstacle and undulated terrain-based' probabilistic roadmap method for motion planning of this hexaped which is able to negotiate large undulations as obstacles. The novelty in this implementation is that, it doesnt require the complete view of the robot's configuration space at any given time during the traversal. It generates a map of the area that is in visibility range and finds the best suitable point in that field of view to make it as the next node of the algorithm. A particular category of undulations which are small enough are automatically 'run-over' as a part of the terrain and not considered as obstacles. The traversal between the nodes is optimized by taking the shortest path and the most optimum gait at that instance which the hexaped can assume. This is again a novel approach to have a real time gait changing technique to optimize the travel time. The hexaped limb can swing in the robot's X-Y plane and the lower link of the limb can move in robot's Z plane by an implementation of a four-bar mechanism. A GUI based server 'Yellow Ladybird' eventually which is the name of the hexaped, is made for real time monitoring and communicating to it the final destination co-ordinates.

ps

link (url) [BibTex]


Thumb xl eccv08
The naked truth: Estimating body shape under clothing,

Balan, A., Black, M. J.

In European Conf. on Computer Vision, ECCV, 5304, pages: 15-29, LNCS, (Editors: D. Forsyth and P. Torr and A. Zisserman), Springer-Verlag, Marseilles, France, October 2008 (inproceedings)

Abstract
We propose a method to estimate the detailed 3D shape of a person from images of that person wearing clothing. The approach exploits a model of human body shapes that is learned from a database of over 2000 range scans. We show that the parameters of this shape model can be recovered independently of body pose. We further propose a generalization of the visual hull to account for the fact that observed silhouettes of clothed people do not provide a tight bound on the true 3D shape. With clothed subjects, different poses provide different constraints on the possible underlying 3D body shape. We consequently combine constraints across pose to more accurately estimate 3D body shape in the presence of occluding clothing. Finally we use the recovered 3D shape to estimate the gender of subjects and then employ gender-specific body models to refine our shape estimates. Results on a novel database of thousands of images of clothed and "naked" subjects, as well as sequences from the HumanEva dataset, suggest the method may be accurate enough for biometric shape analysis in video.

ps

pdf pdf with higher quality images Springerlink version YouTube video on applications data slides [BibTex]

pdf pdf with higher quality images Springerlink version YouTube video on applications data slides [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.23.39 pm
Dynamic time warping for binocular hand tracking and reconstruction

Romero, J., Kragic, D., Kyrki, V., Argyros, A.

In IEEE International Conference on Robotics and Automation,ICRA, pages: 2289 -2294, May 2008 (inproceedings)

ps

Pdf [BibTex]

Pdf [BibTex]


no image
Human movement generation based on convergent flow fields: A computational model and a behavioral experiment

Hoffmann, H., Schaal, S.

In Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.28.24 pm
Simultaneous Visual Recognition of Manipulation Actions and Manipulated Objects

Kjellström, H., Romero, J., Martinez, D., Kragic, D.

In European Conference on Computer Vision, ECCV, pages: 336-349, 2008 (inproceedings)

ps

Pdf [BibTex]

Pdf [BibTex]


no image
Tuning analysis of motor cortical neurons in a person with paralysis during performance of visually instructed cursor control tasks

Kim, S., Simeral, J. D., Hochberg, L. R., Truccolo, W., Donoghue, J., Friehs, G. M., Black, M. J.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

ps

[BibTex]

[BibTex]


no image
Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields

Park, D., Hoffmann, H., Pastor, P., Schaal, S.

In IEEE International Conference on Humanoid Robots, 2008., 2008, clmc (inproceedings)

am

PDF [BibTex]

PDF [BibTex]


Thumb xl screen shot 2012 06 06 at 11.28.04 am
Infinite Kernel Learning

Gehler, P., Nowozin, S.

In Proceedings of NIPS 2008 Workshop on "Kernel Learning: Automatic Selection of Optimal Kernels", 2008 (inproceedings)

ps

project page pdf [BibTex]

project page pdf [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.29.08 pm
Visual Recognition of Grasps for Human-to-Robot Mapping

Kjellström, H., Romero, J., Kragic, D.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pages: 3192-3199, 2008 (inproceedings)

ps

Pdf [BibTex]

Pdf [BibTex]


no image
More than two years of intracortically-based cursor control via a neural interface system

Hochberg, L. R., Simeral, J. D., Kim, S., Stein, J., Friehs, G. M., Black, M. J., Donoghue, J. P.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

ps

[BibTex]

[BibTex]


no image
The dual role of uncertainty in force field learning

Mistry, M., Theodorou, E., Hoffmann, H., Schaal, S.

In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)

Abstract
Force field experiments have been a successful paradigm for studying the principles of planning, execution, and learning in human arm movements. Subjects have been shown to cope with the disturbances generated by force fields by learning internal models of the underlying dynamics to predict disturbance effects or by increasing arm impedance (via co-contraction) if a predictive approach becomes infeasible. Several studies have addressed the issue uncertainty in force field learning. Scheidt et al. demonstrated that subjects exposed to a viscous force field of fixed structure but varying strength (randomly changing from trial to trial), learn to adapt to the mean disturbance, regardless of the statistical distribution. Takahashi et al. additionally show a decrease in strength of after-effects after learning in the randomly varying environment. Thus they suggest that the nervous system adopts a dual strategy: learning an internal model of the mean of the random environment, while simultaneously increasing arm impedance to minimize the consequence of errors. In this study, we examine what role variance plays in the learning of uncertain force fields. We use a 7 degree-of-freedom exoskeleton robot as a manipulandum (Sarcos Master Arm, Sarcos, Inc.), and apply a 3D viscous force field of fixed structure and strength randomly selected from trial to trial. Additionally, in separate blocks of trials, we alter the variance of the randomly selected strength multiplier (while keeping a constant mean). In each block, after sufficient learning has occurred, we apply catch trials with no force field and measure the strength of after-effects. As expected in higher variance cases, results show increasingly smaller levels of after-effects as the variance is increased, thus implying subjects choose the robust strategy of increasing arm impedance to cope with higher levels of uncertainty. Interestingly, however, subjects show an increase in after-effect strength with a small amount of variance as compared to the deterministic (zero variance) case. This result implies that a small amount of variability aides in internal model formation, presumably a consequence of the additional amount of exploration conducted in the workspace of the task.

am

[BibTex]

[BibTex]


no image
Dynamic movement primitives for movement generation motivated by convergent force fields in frog

Hoffmann, H., Pastor, P., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)

am

PDF [BibTex]

PDF [BibTex]


no image
Decoding of reach and grasp from MI population spiking activity using a low-dimensional model of hand and arm posture

Yadollahpour, P., Shakhnarovich, G., Vargas-Irwin, C., Donoghue, J. P., Black, M. J.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

ps

[BibTex]

[BibTex]


no image
Behavioral experiments on reinforcement learning in human motor control

Hoffmann, H., Theodorou, E., Schaal, S.

In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)

Abstract
Reinforcement learning (RL) - learning solely based on reward or cost feedback - is widespread in robotics control and has been also suggested as computational model for human motor control. In human motor control, however, hardly any experiment studied reinforcement learning. Here, we study learning based on visual cost feedback in a reaching task and did three experiments: (1) to establish a simple enough experiment for RL, (2) to study spatial localization of RL, and (3) to study the dependence of RL on the cost function. In experiment (1), subjects sit in front of a drawing tablet and look at a screen onto which the drawing pen's position is projected. Beginning from a start point, their task is to move with the pen through a target point presented on screen. Visual feedback about the pen's position is given only before movement onset. At the end of a movement, subjects get visual feedback only about the cost of this trial. We choose as cost the squared distance between target and virtual pen position at the target line. Above a threshold value, the cost was fixed at this value. In the mapping of the pen's position onto the screen, we added a bias (unknown to subject) and Gaussian noise. As result, subjects could learn the bias, and thus, showed reinforcement learning. In experiment (2), we randomly altered the target position between three different locations (three different directions from start point: -45, 0, 45). For each direction, we chose a different bias. As result, subjects learned all three bias values simultaneously. Thus, RL can be spatially localized. In experiment (3), we varied the sensitivity of the cost function by multiplying the squared distance with a constant value C, while keeping the same cut-off threshold. As in experiment (2), we had three target locations. We assigned to each location a different C value (this assignment was randomized between subjects). Since subjects learned the three locations simultaneously, we could directly compare the effect of the different cost functions. As result, we found an optimal C value; if C was too small (insensitive cost), learning was slow; if C was too large (narrow cost valley), the exploration time was longer and learning delayed. Thus, reinforcement learning in human motor control appears to be sen

am

[BibTex]

[BibTex]


no image
Movement generation by learning from demonstration and generalization to new targets

Pastor, P., Hoffmann, H., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)

am

PDF [BibTex]

PDF [BibTex]


no image
Combining dynamic movement primitives and potential fields for online obstacle avoidance

Park, D., Hoffmann, H., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), Cleveland, Ohio, 2008, 2008, clmc (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


no image
Neural activity in the motor cortex of humans with tetraplegia

Donoghue, J., Simeral, J., Black, M., Kim, S., Truccolo, W., Hochberg, L.

AREADNE Research in Encoding And Decoding of Neural Ensembles, June, Santorini, Greece, 2008 (conference)

ps

[BibTex]

[BibTex]


no image
Computational model for movement learning under uncertain cost

Theodorou, E., Hoffmann, H., Mistry, M., Schaal, S.

In Abstracts of the Society of Neuroscience Meeting (SFN 2008), Washington, DC 2008, 2008, clmc (inproceedings)

Abstract
Stochastic optimal control is a framework for computing control commands that lead to an optimal behavior under a given cost. Despite the long history of optimal control in engineering, it has been only recently applied to describe human motion. So far, stochastic optimal control has been mainly used in tasks that are already learned, such as reaching to a target. For learning, however, there are only few cases where optimal control has been applied. The main assumptions of stochastic optimal control that restrict its application to tasks after learning are the a priori knowledge of (1) a quadratic cost function (2) a state space model that captures the kinematics and/or dynamics of musculoskeletal system and (3) a measurement equation that models the proprioceptive and/or exteroceptive feedback. Under these assumptions, a sequence of control gains is computed that is optimal with respect to the prespecified cost function. In our work, we relax the assumption of the a priori known cost function and provide a computational framework for modeling tasks that involve learning. Typically, a cost function consists of two parts: one part that models the task constraints, like squared distance to goal at movement endpoint, and one part that integrates over the squared control commands. In learning a task, the first part of this cost function will be adapted. We use an expectation-maximization scheme for learning: the expectation step optimizes the task constraints through gradient descent of a reward function and the maximizing step optimizes the control commands. Our computational model is tested and compared with data given from a behavioral experiment. In this experiment, subjects sit in front of a drawing tablet and look at a screen onto which the drawing-pen's position is projected. Beginning from a start point, their task is to move with the pen through a target point presented on screen. Visual feedback about the pen's position is given only before movement onset. At the end of a movement, subjects get visual feedback only about the cost of this trial. In the mapping of the pen's position onto the screen, we added a bias (unknown to subject) and Gaussian noise. Therefore the cost is a function of this bias. The subjects were asked to reach to the target and minimize this cost over trials. In this behavioral experiment, subjects could learn the bias and thus showed reinforcement learning. With our computational model, we could model the learning process over trials. Particularly, the dependence on parameters of the reward function (Gaussian width) and the modulation of movement variance over time were similar in experiment and model.

am

[BibTex]

[BibTex]


no image
A Bayesian approach to empirical local linearizations for robotics

Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.

In International Conference on Robotics and Automation (ICRA2008), Pasadena, CA, USA, May 19-23, 2008, 2008, clmc (inproceedings)

Abstract
Local linearizations are ubiquitous in the control of robotic systems. Analytical methods, if available, can be used to obtain the linearization, but in complex robotics systems where the the dynamics and kinematics are often not faithfully obtainable, empirical linearization may be preferable. In this case, it is important to only use data for the local linearization that lies within a ``reasonable'' linear regime of the system, which can be defined from the Hessian at the point of the linearization -- a quantity that is not available without an analytical model. We introduce a Bayesian approach to solve statistically what constitutes a ``reasonable'' local regime. We approach this problem in the context local linear regression. In contrast to previous locally linear methods, we avoid cross-validation or complex statistical hypothesis testing techniques to find the appropriate local regime. Instead, we treat the parameters of the local regime probabilistically and use approximate Bayesian inference for their estimation. This approach results in an analytical set of iterative update equations that are easily implemented on real robotics systems for real-time applications. As in other locally weighted regressions, our algorithm also lends itself to complete nonlinear function approximation for learning empirical internal models. We sketch the derivation of our Bayesian method and provide evaluations on synthetic data and actual robot data where the analytical linearization was known.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Do humans plan continuous trajectories in kinematic coordinates?

Hoffmann, H., Schaal, S.

In Abstracts of the Society of Neuroscience Meeting (SFN 2008), Washington, DC 2008, 2008, clmc (inproceedings)

Abstract
The planning and execution of human arm movements is still unresolved. An ongoing controversy is whether we plan a movement in kinematic coordinates and convert these coordinates with an inverse internal model into motor commands (like muscle activation) or whether we combine a few muscle synergies or equilibrium points to move a hand, e.g., between two targets. The first hypothesis implies that a planner produces a desired end-effector position for all time points; the second relies on the dynamics of the muscular-skeletal system for a given control command to produce a continuous end-effector trajectory. To distinguish between these two possibilities, we use a visuomotor adaptation experiment. Subjects moved a pen on a graphics tablet and observed the pen's mapped position onto a screen (subjects quickly adapted to this mapping). The task was to move a cursor between two points in a given time window. In the adaptation test, we manipulated the velocity profile of the cursor feedback such that the shape of the trajectories remained unchanged (for straight paths). If humans would use a kinematic plan and map at each time the desired end-effector position onto control commands, subjects should adapt to the above manipulation. In a similar experiment, Wolpert et al (1995) showed adaptation to changes in the curvature of trajectories. This result, however, cannot rule out a shift of an equilibrium point or an additional synergy activation between start and end point of a movement. In our experiment, subjects did two sessions, one control without and one with velocity-profile manipulation. To skew the velocity profile of the cursor trajectory, we added to the current velocity, v, the function 0.8*v*cos(pi + pi*x), where x is the projection of the cursor position onto the start-goal line divided by the distance start to goal (x=0 at the start point). As result, subjects did not adapt to this manipulation: for all subjects, the true hand motion was not significantly modified in a direction consistent with adaptation, despite that the visually presented motion differed significantly from the control motion. One may still argue that this difference in motion was insufficient to be processed visually. Thus, as a control experiment, we replayed control and modified motions to the subjects and asked which of the two motions appeared 'more natural'. Subjects chose the unperturbed motion as more natural significantly better than chance. In summary, for a visuomotor transformation task, the hypothesis of a planned continuous end-effector trajectory predicts adaptation to a modified velocity profile. The current experiment found no adaptation under such transformation.

am

[BibTex]

[BibTex]


Thumb xl trajectory nips
Nonrigid Structure from Motion in Trajectory Space

Akhter, I., Sheikh, Y., Khan, S., Kanade, T.

In Neural Information Processing Systems, 1(2):41-48, 2008 (inproceedings)

Abstract
Existing approaches to nonrigid structure from motion assume that the instantaneous 3D shape of a deforming object is a linear combination of basis shapes, which have to be estimated anew for each video sequence. In contrast, we propose that the evolving 3D structure be described by a linear combination of basis trajectories. The principal advantage of this approach is that we do not need to estimate any basis vectors during computation. We show that generic bases over trajectories, such as the Discrete Cosine Transform (DCT) basis, can be used to compactly describe most real motions. This results in a significant reduction in unknowns, and corresponding stability in estimation. We report empirical performance, quantitatively using motion capture data, and qualitatively on several video sequences exhibiting nonrigid motions including piece-wise rigid motion, partially nonrigid motion (such as a facial expression), and highly nonrigid motion (such as a person dancing).

ps

pdf project page [BibTex]

pdf project page [BibTex]


Thumb xl sigalnips
Combined discriminative and generative articulated pose and non-rigid shape estimation

Sigal, L., Balan, A., Black, M. J.

In Advances in Neural Information Processing Systems 20, NIPS-2007, pages: 1337–1344, MIT Press, 2008 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Reconstructing reach and grasp actions using neural population activity from Primary Motor Cortex

Vargas-Irwin, C. E., Yadollahpour, P., Shakhnarovich, G., Black, M. J., Donoghue, J. P.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

ps

[BibTex]

[BibTex]

1999


Thumb xl bildschirmfoto 2013 01 14 um 09.07.06
Edges as outliers: Anisotropic smoothing using local image statistics

Black, M. J., Sapiro, G.

In Scale-Space Theories in Computer Vision, Second Int. Conf., Scale-Space ’99, pages: 259-270, LNCS 1682, Springer, Corfu, Greece, September 1999 (inproceedings)

Abstract
Edges are viewed as statistical outliers with respect to local image gradient magnitudes. Within local image regions we compute a robust statistical measure of the gradient variation and use this in an anisotropic diffusion framework to determine a spatially varying "edge-stopping" parameter σ. We show how to determine this parameter for two edge-stopping functions described in the literature (Perona-Malik and the Tukey biweight). Smoothing of the image is related the local texture and in regions of low texture, small gradient values may be treated as edges whereas in regions of high texture, large gradient magnitudes are necessary before an edge is preserved. Intuitively these results have similarities with human perceptual phenomena such as masking and "popout". Results are shown on a variety of standard images.

ps

pdf [BibTex]

1999


pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 07 um 12.35.15
Probabilistic detection and tracking of motion discontinuities

(Marr Prize, Honorable Mention)

Black, M. J., Fleet, D. J.

In Int. Conf. on Computer Vision, ICCV-99, pages: 551-558, ICCV, Corfu, Greece, September 1999 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 09.12.47
Explaining optical flow events with parameterized spatio-temporal models

Black, M. J.

In IEEE Proc. Computer Vision and Pattern Recognition, CVPR’99, pages: 326-332, IEEE, Fort Collins, CO, 1999 (inproceedings)

ps

pdf video [BibTex]

pdf video [BibTex]

1995


Thumb xl bildschirmfoto 2013 01 14 um 10.58.31
Robust estimation of multiple surface shapes from occluded textures

Black, M. J., Rosenholtz, R.

In International Symposium on Computer Vision, pages: 485-490, Miami, FL, November 1995 (inproceedings)

ps

pdf [BibTex]

1995


pdf [BibTex]


no image
The PLAYBOT Project

Tsotsos, J. K., Dickinson, S., Jenkin, M., Milios, E., Jepson, A., Down, B., Amdur, E., Stevenson, S., Black, M., Metaxas, D., Cooperstock, J., Culhane, S., Nuflo, F., Verghese, G., Wai, W., Wilkes, D., Ye, Y.

In Proc. IJCAI Workshop on AI Applications for Disabled People, Montreal, August 1995 (inproceedings)

ps

abstract [BibTex]

abstract [BibTex]


no image
A kendama learning robot based on a dynamic optimization theory

Miyamoto, H., Gandolfo, F., Gomi, H., Schaal, S., Koike, Y., Osu, R., Nakano, E., Kawato, M.

In Preceedings of the 4th IEEE International Workshop on Robot and Human Communication (RO-MAN’95), pages: 327-332, Tokyo, July 1995, clmc (inproceedings)

am

[BibTex]

[BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 11.06.54
Recognizing facial expressions under rigid and non-rigid facial motions using local parametric models of image motion

Black, M. J., Yacoob, Y.

In International Workshop on Automatic Face- and Gesture-Recognition, Zurich, July 1995 (inproceedings)

ps

video abstract [BibTex]

video abstract [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 11.24.02
Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion

Black, M. J., Yacoob, Y.

In Fifth International Conf. on Computer Vision, ICCV’95, pages: 347-381, Boston, MA, June 1995 (inproceedings)

Abstract
This paper explores the use of local parametrized models of image motion for recovering and recognizing the non-rigid and articulated motion of human faces. Parametric flow models (for example affine) are popular for estimating motion in rigid scenes. We observe that within local regions in space and time, such models not only accurately model non-rigid facial motions but also provide a concise description of the motion in terms of a small number of parameters. These parameters are intuitively related to the motion of facial features during facial expressions and we show how expressions such as anger, happiness, surprise, fear, disgust and sadness can be recognized from the local parametric motions in the presence of significant head motion. The motion tracking and expression recognition approach performs with high accuracy in extensive laboratory experiments involving 40 subjects as well as in television and movie sequences.

ps

pdf video publisher site [BibTex]

pdf video publisher site [BibTex]


no image
A computational model for shape from texture for multiple textures

Black, M. J., Rosenholtz, R.

Investigative Ophthalmology and Visual Science Supplement, Vol. 36, No. 4, pages: 2202, March 1995 (conference)

ps

abstract [BibTex]

abstract [BibTex]