Header logo is


2011


Benchmark datasets for pose estimation and tracking
Benchmark datasets for pose estimation and tracking

Andriluka, M., Sigal, L., Black, M. J.

In Visual Analysis of Humans: Looking at People, pages: 253-274, (Editors: Moesland and Hilton and Kr"uger and Sigal), Springer-Verlag, London, 2011 (incollection)

ps

publisher's site Project Page [BibTex]

2011


publisher's site Project Page [BibTex]


Fields of experts
Fields of experts

Roth, S., Black, M. J.

In Markov Random Fields for Vision and Image Processing, pages: 297-310, (Editors: Blake, A. and Kohli, P. and Rother, C.), MIT Press, 2011 (incollection)

Abstract
Fields of Experts are high-order Markov random field (MRF) models with potential functions that extend over large pixel neighborhoods. The clique potentials are modeled as a Product of Experts using nonlinear functions of many linear filter responses. In contrast to previous MRF approaches, all parameters, including the linear filters themselves, are learned from training data. A Field of Experts (FoE) provides a generic, expressive image prior that can capture the statistics of natural scenes, and can be used for a variety of machine vision tasks. The capabilities of FoEs are demonstrated with two example applications, image denoising and image inpainting, which are implemented using a simple, approximate inference scheme. While the FoE model is trained on a generic image database and is not tuned toward a specific application, the results compete with specialized techniques.

ps

publisher site [BibTex]

publisher site [BibTex]


Steerable random fields for image restoration and inpainting
Steerable random fields for image restoration and inpainting

Roth, S., Black, M. J.

In Markov Random Fields for Vision and Image Processing, pages: 377-387, (Editors: Blake, A. and Kohli, P. and Rother, C.), MIT Press, 2011 (incollection)

Abstract
This chapter introduces the concept of a Steerable Random Field (SRF). In contrast to traditional Markov random field (MRF) models in low-level vision, the random field potentials of a SRF are defined in terms of filter responses that are steered to the local image structure. This steering uses the structure tensor to obtain derivative responses that are either aligned with, or orthogonal to, the predominant local image structure. Analysis of the statistics of these steered filter responses in natural images leads to the model proposed here. Clique potentials are defined over steered filter responses using a Gaussian scale mixture model and are learned from training data. The SRF model connects random fields with anisotropic regularization and provides a statistical motivation for the latter. Steering the random field to the local image structure improves image denoising and inpainting performance compared with traditional pairwise MRFs.

ps

publisher site [BibTex]

publisher site [BibTex]


Model-Based Pose Estimation
Model-Based Pose Estimation

Pons-Moll, G., Rosenhahn, B.

In Visual Analysis of Humans: Looking at People, pages: 139-170, 9, (Editors: T. Moeslund, A. Hilton, V. Krueger, L. Sigal), Springer, 2011 (inbook)

ps

book page pdf [BibTex]

book page pdf [BibTex]

2010


no image
Locally weighted regression for control

Ting, J., Vijayakumar, S., Schaal, S.

In Encyclopedia of Machine Learning, pages: 613-624, (Editors: Sammut, C.;Webb, G. I.), Springer, 2010, clmc (inbook)

Abstract
This is article addresses two topics: learning control and locally weighted regression.

am

link (url) [BibTex]

2010


link (url) [BibTex]

2009


Synchronized Oriented Mutations Algorithm for Training Neural Controllers
Synchronized Oriented Mutations Algorithm for Training Neural Controllers

Berenz, V., Suzuki, K.

In Advances in Neuro-Information Processing: 15th International Conference, ICONIP 2008, Auckland, New Zealand, November 25-28, 2008, Revised Selected Papers, Part II, pages: 244-251, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009 (inbook)

am

link (url) DOI [BibTex]

2009


link (url) DOI [BibTex]


Integration of Visual Cues for Robotic Grasping
Integration of Visual Cues for Robotic Grasping

Bergström, N., Bohg, J., Kragic, D.

In Computer Vision Systems, 5815, pages: 245-254, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009 (incollection)

Abstract
In this paper, we propose a method that generates grasping actions for novel objects based on visual input from a stereo camera. We are integrating two methods that are advantageous either in predicting how to grasp an object or where to apply a grasp. The first one reconstructs a wire frame object model through curve matching. Elementary grasping actions can be associated to parts of this model. The second method predicts grasping points in a 2D contour image of an object. By integrating the information from the two approaches, we can generate a sparse set of full grasp configurations that are of a good quality. We demonstrate our approach integrated in a vision system for complex shaped objects as well as in cluttered scenes.

am

pdf link (url) DOI [BibTex]

pdf link (url) DOI [BibTex]


no image
An introduction to Kernel Learning Algorithms

Gehler, P., Schölkopf, B.

In Kernel Methods for Remote Sensing Data Analysis, pages: 25-48, 2, (Editors: Gustavo Camps-Valls and Lorenzo Bruzzone), Wiley, New York, NY, USA, 2009 (inbook)

Abstract
Kernel learning algorithms are currently becoming a standard tool in the area of machine learning and pattern recognition. In this chapter we review the fundamental theory of kernel learning. As the basic building block we introduce the kernel function, which provides an elegant and general way to compare possibly very complex objects. We then review the concept of a reproducing kernel Hilbert space and state the representer theorem. Finally we give an overview of the most prominent algorithms, which are support vector classification and regression, Gaussian Processes and kernel principal analysis. With multiple kernel learning and structured output prediction we also introduce some more recent advancements in the field.

ei ps

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Visual Object Discovery

Sinha, P., Balas, B., Ostrovsky, Y., Wulff, J.

In Object Categorization: Computer and Human Vision Perspectives, pages: 301-323, (Editors: S. J. Dickinson, A. Leonardis, B. Schiele, M.J. Tarr), Cambridge University Press, 2009 (inbook)

ps

link (url) [BibTex]

link (url) [BibTex]

1992


no image
Informationssysteme mit CAD (Information systems within CAD)

Schaal, S.

In CAD/CAM Grundlagen, pages: 199-204, (Editors: Milberg, J.), Springer, Buchreihe CIM-TT. Berlin, 1992, clmc (inbook)

am

[BibTex]

1992


[BibTex]