Header logo is


1999


Thumb xl bildschirmfoto 2013 01 14 um 09.07.06
Edges as outliers: Anisotropic smoothing using local image statistics

Black, M. J., Sapiro, G.

In Scale-Space Theories in Computer Vision, Second Int. Conf., Scale-Space ’99, pages: 259-270, LNCS 1682, Springer, Corfu, Greece, September 1999 (inproceedings)

Abstract
Edges are viewed as statistical outliers with respect to local image gradient magnitudes. Within local image regions we compute a robust statistical measure of the gradient variation and use this in an anisotropic diffusion framework to determine a spatially varying "edge-stopping" parameter σ. We show how to determine this parameter for two edge-stopping functions described in the literature (Perona-Malik and the Tukey biweight). Smoothing of the image is related the local texture and in regions of low texture, small gradient values may be treated as edges whereas in regions of high texture, large gradient magnitudes are necessary before an edge is preserved. Intuitively these results have similarities with human perceptual phenomena such as masking and "popout". Results are shown on a variety of standard images.

ps

pdf [BibTex]

1999


pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 07 um 12.35.15
Probabilistic detection and tracking of motion discontinuities

(Marr Prize, Honorable Mention)

Black, M. J., Fleet, D. J.

In Int. Conf. on Computer Vision, ICCV-99, pages: 551-558, ICCV, Corfu, Greece, September 1999 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl paircover
Artscience Sciencart

Black, M. J., Levy, D., PamelaZ,

In Art and Innovation: The Xerox PARC Artist-in-Residence Program, pages: 244-300, (Editors: Harris, C.), MIT-Press, 1999 (incollection)

Abstract
One of the effects of the PARC Artist In Residence (PAIR) program has been to expose the strong connections between scientists and artists. Both do what they do because they need to do it. They are often called upon to justify their work in order to be allowed to continue to do it. They need to justify it to funders, to sponsoring institutions, corporations, the government, the public. They publish papers, teach workshops, and write grants touting the educational or health benefits of what they do. All of these things are to some extent valid, but the fact of the matter is: artists and scientists do their work because they are driven to do it. They need to explore and create.

This chapter attempts to give a flavor of one multi-way "PAIRing" between performance artist PamelaZ and two PARC researchers, Michael Black and David Levy. The three of us paired up because we found each other interesting. We chose each other. While most artists in the program are paired with a single researcher Pamela jokingly calls herself a bigamist for choosing two PAIR "husbands" with different backgrounds and interests.

There are no "rules" to the PAIR program; no one told us what to do with our time. Despite this we all had a sense that we needed to produce something tangible during Pamela's year-long residency. In fact, Pamela kept extending her residency because she did not feel as though we had actually made anything concrete. The interesting thing was that all along we were having great conversations, some of which Pamela recorded. What we did not see at the time was that it was these conversations between artists and scientists that are at the heart of the PAIR program and that these conversations were changing the way we thought about our own work and the relationships between science and art.

To give these conversations their due, and to allow the reader into our PAIR interactions, we include two of our many conversations in this chapter.

ps

[BibTex]

[BibTex]


Thumb xl bildschirmfoto 2012 12 06 um 09.38.15
Parameterized modeling and recognition of activities

Yacoob, Y., Black, M. J.

Computer Vision and Image Understanding, 73(2):232-247, 1999 (article)

Abstract
In this paper we consider a class of human activities—atomic activities—which can be represented as a set of measurements over a finite temporal window (e.g., the motion of human body parts during a walking cycle) and which has a relatively small space of variations in performance. A new approach for modeling and recognition of atomic activities that employs principal component analysis and analytical global transformations is proposed. The modeling of sets of exemplar instances of activities that are similar in duration and involve similar body part motions is achieved by parameterizing their representation using principal component analysis. The recognition of variants of modeled activities is achieved by searching the space of admissible parameterized transformations that these activities can undergo. This formulation iteratively refines the recognition of the class to which the observed activity belongs and the transformation parameters that relate it to the model in its class. We provide several experiments on recognition of articulated and deformable human motions from image motion parameters.

ps

pdf pdf from publisher DOI [BibTex]

pdf pdf from publisher DOI [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 09.12.47
Explaining optical flow events with parameterized spatio-temporal models

Black, M. J.

In IEEE Proc. Computer Vision and Pattern Recognition, CVPR’99, pages: 326-332, IEEE, Fort Collins, CO, 1999 (inproceedings)

ps

pdf video [BibTex]

pdf video [BibTex]


no image
Is imitation learning the route to humanoid robots?

Schaal, S.

Trends in Cognitive Sciences, 3(6):233-242, 1999, clmc (article)

Abstract
This review will focus on two recent developments in artificial intelligence and neural computation: learning from imitation and the development of humanoid robots. It will be postulated that the study of imitation learning offers a promising route to gain new insights into mechanisms of perceptual motor control that could ultimately lead to the creation of autonomous humanoid robots. This hope is justified because imitation learning channels research efforts towards three important issues: efficient motor learning, the connection between action and perception, and modular motor control in form of movement primitives. In order to make these points, first, a brief review of imitation learning will be given from the view of psychology and neuroscience. In these fields, representations and functional connections between action and perception have been explored that contribute to the understanding of motor acts of other beings. The recent discovery that some areas in the primate brain are active during both movement perception and execution provided a first idea of the possible neural basis of imitation. Secondly, computational approaches to imitation learning will be described, initially from the perspective of traditional AI and robotics, and then with a focus on neural network models and statistical learning research. Parallels and differences between biological and computational approaches to imitation will be highlighted. The review will end with an overview of current projects that actually employ imitation learning for humanoid robots.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Nonparametric regression for learning nonlinear transformations

Schaal, S.

In Prerational Intelligence in Strategies, High-Level Processes and Collective Behavior, 2, pages: 595-621, (Editors: Ritter, H.;Cruse, H.;Dean, J.), Kluwer Academic Publishers, 1999, clmc (inbook)

Abstract
Information processing in animals and artificial movement systems consists of a series of transformations that map sensory signals to intermediate representations, and finally to motor commands. Given the physical and neuroanatomical differences between individuals and the need for plasticity during development, it is highly likely that such transformations are learned rather than pre-programmed by evolution. Such self-organizing processes, capable of discovering nonlinear dependencies between different groups of signals, are one essential part of prerational intelligence. While neural network algorithms seem to be the natural choice when searching for solutions for learning transformations, this paper will take a more careful look at which types of neural networks are actually suited for the requirements of an autonomous learning system. The approach that we will pursue is guided by recent developments in learning theory that have linked neural network learning to well established statistical theories. In particular, this new statistical understanding has given rise to the development of neural network systems that are directly based on statistical methods. One family of such methods stems from nonparametric regression. This paper will compare nonparametric learning with the more widely used parametric counterparts in a non technical fashion, and investigate how these two families differ in their properties and their applicabilities. We will argue that nonparametric neural networks offer a set of characteristics that make them a very promising candidate for on-line learning in autonomous system.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Segmentation of endpoint trajectories does not imply segmented control

Sternad, D., Schaal, D.

Experimental Brain Research, 124(1):118-136, 1999, clmc (article)

Abstract
While it is generally assumed that complex movements consist of a sequence of simpler units, the quest to define these units of action, or movement primitives, still remains an open question. In this context, two hypotheses of movement segmentation of endpoint trajectories in 3D human drawing movements are re-examined: (1) the stroke-based segmentation hypothesis based on the results that the proportionality coefficient of the 2/3 power law changes discontinuously with each new â??strokeâ?, and (2) the segmentation hypothesis inferred from the observation of piecewise planar endpoint trajectories of 3D drawing movements. In two experiments human subjects performed a set of elliptical and figure-8 patterns of different sizes and orientations using their whole arm in 3D. The kinematic characteristics of the endpoint trajectories and the seven joint angles of the arm were analyzed. While the endpoint trajectories produced similar segmentation features as reported in the literature, analyses of the joint angles show no obvious segmentation but rather continuous oscillatory patterns. By approximating the joint angle data of human subjects with sinusoidal trajectories, and by implementing this model on a 7-degree-of-freedom anthropomorphic robot arm, it is shown that such a continuous movement strategy can produce exactly the same features as observed by the above segmentation hypotheses. The origin of this apparent segmentation of endpoint trajectories is traced back to the nonlinear transformations of the forward kinematics of human arms. The presented results demonstrate that principles of discrete movement generation may not be reconciled with those of rhythmic movement as easily as has been previously suggested, while the generalization of nonlinear pattern generators to arm movements can offer an interesting alternative to approach the question of units of action.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 10.58.31
Robust estimation of multiple surface shapes from occluded textures

Black, M. J., Rosenholtz, R.

In International Symposium on Computer Vision, pages: 485-490, Miami, FL, November 1995 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
The PLAYBOT Project

Tsotsos, J. K., Dickinson, S., Jenkin, M., Milios, E., Jepson, A., Down, B., Amdur, E., Stevenson, S., Black, M., Metaxas, D., Cooperstock, J., Culhane, S., Nuflo, F., Verghese, G., Wai, W., Wilkes, D., Ye, Y.

In Proc. IJCAI Workshop on AI Applications for Disabled People, Montreal, August 1995 (inproceedings)

ps

abstract [BibTex]

abstract [BibTex]


no image
A kendama learning robot based on a dynamic optimization theory

Miyamoto, H., Gandolfo, F., Gomi, H., Schaal, S., Koike, Y., Osu, R., Nakano, E., Kawato, M.

In Preceedings of the 4th IEEE International Workshop on Robot and Human Communication (RO-MAN’95), pages: 327-332, Tokyo, July 1995, clmc (inproceedings)

am

[BibTex]

[BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 11.06.54
Recognizing facial expressions under rigid and non-rigid facial motions using local parametric models of image motion

Black, M. J., Yacoob, Y.

In International Workshop on Automatic Face- and Gesture-Recognition, Zurich, July 1995 (inproceedings)

ps

video abstract [BibTex]

video abstract [BibTex]


Thumb xl patentc
Image segmentation using robust mixture models

Black, M. J., Jepson, A. D.

US Pat. 5,802,203, June 1995 (patent)

ps

pdf on-line at USPTO [BibTex]

pdf on-line at USPTO [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 11.24.02
Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion

Black, M. J., Yacoob, Y.

In Fifth International Conf. on Computer Vision, ICCV’95, pages: 347-381, Boston, MA, June 1995 (inproceedings)

Abstract
This paper explores the use of local parametrized models of image motion for recovering and recognizing the non-rigid and articulated motion of human faces. Parametric flow models (for example affine) are popular for estimating motion in rigid scenes. We observe that within local regions in space and time, such models not only accurately model non-rigid facial motions but also provide a concise description of the motion in terms of a small number of parameters. These parameters are intuitively related to the motion of facial features during facial expressions and we show how expressions such as anger, happiness, surprise, fear, disgust and sadness can be recognized from the local parametric motions in the presence of significant head motion. The motion tracking and expression recognition approach performs with high accuracy in extensive laboratory experiments involving 40 subjects as well as in television and movie sequences.

ps

pdf video publisher site [BibTex]

pdf video publisher site [BibTex]


no image
A computational model for shape from texture for multiple textures

Black, M. J., Rosenholtz, R.

Investigative Ophthalmology and Visual Science Supplement, Vol. 36, No. 4, pages: 2202, March 1995 (conference)

ps

abstract [BibTex]

abstract [BibTex]


no image
Batting a ball: Dynamics of a rhythmic skill

Sternad, D., Schaal, S., Atkeson, C. G.

In Studies in Perception and Action, pages: 119-122, (Editors: Bardy, B.;Bostma, R.;Guiard, Y.), Erlbaum, Hillsdayle, NJ, 1995, clmc (inbook)

am

[BibTex]

[BibTex]


no image
Memory-based neural networks for robot learning

Atkeson, C. G., Schaal, S.

Neurocomputing, 9, pages: 1-27, 1995, clmc (article)

Abstract
This paper explores a memory-based approach to robot learning, using memory-based neural networks to learn models of the task to be performed. Steinbuch and Taylor presented neural network designs to explicitly store training data and do nearest neighbor lookup in the early 1960s. In this paper their nearest neighbor network is augmented with a local model network, which fits a local model to a set of nearest neighbors. This network design is equivalent to a statistical approach known as locally weighted regression, in which a local model is formed to answer each query, using a weighted regression in which nearby points (similar experiences) are weighted more than distant points (less relevant experiences). We illustrate this approach by describing how it has been used to enable a robot to learn a difficult juggling task. Keywords: memory-based, robot learning, locally weighted regression, nearest neighbor, local models.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl teaser 1
Accurate Vision-based Manipulation through Contact Reasoning

Kloss, A., Bauza, M., Wu, J., Tenenbaum, J. B., Rodriguez, A., Bohg, J.

In International Conference on Robotics and Automation, May (inproceedings) Submitted

Abstract
Planning contact interactions is one of the core challenges of many robotic tasks. Optimizing contact locations while taking dynamics into account is computationally costly and in only partially observed environments, executing contact-based tasks often suffers from low accuracy. We present an approach that addresses these two challenges for the problem of vision-based manipulation. First, we propose to disentangle contact from motion optimization. Thereby, we improve planning efficiency by focusing computation on promising contact locations. Second, we use a hybrid approach for perception and state estimation that combines neural networks with a physically meaningful state representation. In simulation and real-world experiments on the task of planar pushing, we show that our method is more efficient and achieves a higher manipulation accuracy than previous vision-based approaches.

am

[BibTex]


[BibTex]


no image
Geometric Image Synthesis

Alhaija, H. A., Mustikovela, S. K., Geiger, A., Rother, C.

(conference)

avg

Project Page [BibTex]

Project Page [BibTex]