Header logo is


2004


no image
E. Coli Inspired Propulsion for Swimming Microrobots

Behkam, Bahareh, Sitti, Metin

pages: 1037–1041, 2004 (article)

Abstract
Medical applications are among the most fascinating areas of microrobotics. For long, scientists have dreamed of miniature smart devices that can travel inside the human body and carry out a host of complex operations such as minimally invasive surgery (MIS), highly localized drug delivery, and screening for diseases that are in their very early stages. Still a distant dream, significant progress in micro and nanotechnology brings us closer to materializing it. For such a miniature device to be injected into the body, it has to be 800 μm or smaller in diameter. Miniature, safe and energy efficient propulsion systems hold the key to maturing this technology but they pose significant challenges. Scaling the macroscale natation mechanisms to micro/nano length scales is unfeasible. It has been estimated that a vibrating-fin driven swimming robot shorter than 6 mm can not overcome the viscous drag forces in water. In this paper, the authors propose a new type of propulsion inspired by the motility mechanism of bacteria with peritrichous flagellation, such as Escherichia coli, Salmonella typhimurium and Serratia marcescens. The perfomance of the propulsive mechanism is estimated by modeling the dynamics of the motion. The motion of the moving organelle is simulated and key parameters such as velocity, distribution of force and power requirments for different configurations of the tail are determined theoretically. In order to validate the theoretical result, a scaled up model of the swimming robot is fabricated and characterized in silicone oil using the Buckingham PI theorem for scaling. The results are compared with the theoretically computed values. These robots are intended to swim in stagnation/low velocity biofluid and reach currently inaccessible areas of the human body for disease inspection and possibly treatment. Potential target regions to use these robots include eyeball cavity, cerebrospinal fluid and the urinary system.

pi

link (url) DOI [BibTex]

2004


link (url) DOI [BibTex]


no image
E. coli inspired propulsion for swimming microrobots

Behkam, B., Sitti, M.

In ASME 2004 International Mechanical Engineering Congress and Exposition, pages: 1037-1041, 2004 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Dynamic modes of nanoparticle motion during nanoprobe-based manipulation

Tafazzoli, A., Sitti, M.

In Nanotechnology, 2004. 4th IEEE Conference on, pages: 35-37, 2004 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Modeling and design of biomimetic adhesives inspired by gecko foot-hairs

Shah, G. J., Sitti, M.

In Robotics and Biomimetics, 2004. ROBIO 2004. IEEE International Conference on, pages: 873-878, 2004 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Discovering optimal imitation strategies

Billard, A., Epars, Y., Calinon, S., Cheng, G., Schaal, S.

Robotics and Autonomous Systems, 47(2-3):68-77, 2004, clmc (article)

Abstract
This paper develops a general policy for learning relevant features of an imitation task. We restrict our study to imitation of manipulative tasks or of gestures. The imitation process is modeled as a hierarchical optimization system, which minimizes the discrepancy between two multi-dimensional datasets. To classify across manipulation strategies, we apply a probabilistic analysis to data in Cartesian and joint spaces. We determine a general metric that optimizes the policy of task reproduction, following strategy determination. The model successfully discovers strategies in six different imitative tasks and controls task reproduction by a full body humanoid robot.

am

[BibTex]

[BibTex]


no image
Learning Composite Adaptive Control for a Class of Nonlinear Systems

Nakanishi, J., Farrell, J. A., Schaal, S.

In IEEE International Conference on Robotics and Automation, pages: 2647-2652, New Orleans, LA, USA, April 2004, 2004, clmc (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


no image
Rhythmic movement is not discrete

Schaal, S., Sternad, D., Osu, R., Kawato, M.

Nature Neuroscience, 7(10):1137-1144, 2004, clmc (article)

Abstract
Rhythmic movements, like walking, chewing, or scratching, are phylogenetically old mo-tor behaviors found in many organisms, ranging from insects to primates. In contrast, discrete movements, like reaching, grasping, or kicking, are behaviors that have reached sophistication primarily in younger species, particularly in primates. Neurophysiological and computational research on arm motor control has focused almost exclusively on dis-crete movements, essentially assuming similar neural circuitry for rhythmic tasks. In con-trast, many behavioral studies focused on rhythmic models, subsuming discrete move-ment as a special case. Here, using a human functional neuroimaging experiment, we show that in addition to areas activated in rhythmic movement, discrete movement in-volves several higher cortical planning areas, despite both movement conditions were confined to the same single wrist joint. These results provide the first neuroscientific evi-dence that rhythmic arm movement cannot be part of a more general discrete movement system, and may require separate neurophysiological and theoretical treatment.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Augmented reality user interface for nanomanipulation using atomic force microscopes

Vogl, W., Sitti, M., Ehrenstrasser, M., Zäh, M.

In Proc. of Eurohaptics, pages: 413-416, 2004 (inproceedings)

pi

[BibTex]

[BibTex]


no image
WaalBots for Space applications

Menon, C., Murphy, M., Angrilli, F., Sitti, M.

In 55th IAC Conference, Vancouver, Canada, 2004 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Learning from demonstration and adaptation of biped locomotion

Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., Kawato, M.

Robotics and Autonomous Systems, 47(2-3):79-91, 2004, clmc (article)

Abstract
In this paper, we introduce a framework for learning biped locomotion using dynamical movement primitives based on non-linear oscillators. Our ultimate goal is to establish a design principle of a controller in order to achieve natural human-like locomotion. We suggest dynamical movement primitives as a central pattern generator (CPG) of a biped robot, an approach we have previously proposed for learning and encoding complex human movements. Demonstrated trajectories are learned through movement primitives by locally weighted regression, and the frequency of the learned trajectories is adjusted automatically by a novel frequency adaptation algorithmbased on phase resetting and entrainment of coupled oscillators. Numerical simulations and experimental implementation on a physical robot demonstrate the effectiveness of the proposed locomotioncontroller.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Towards Tractable Parameter-Free Statistical Learning (Phd Thesis)

D’Souza, A

Department of Computer Science, University of Southern California, Los Angeles, 2004, clmc (phdthesis)

am

link (url) [BibTex]

link (url) [BibTex]


no image
A framework for learning biped locomotion with dynamic movement primitives

Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., Kawato, M.

In IEEE-RAS/RSJ International Conference on Humanoid Robots (Humanoids 2004), IEEE, Los Angeles, CA: Nov.10-12, Santa Monica, CA, 2004, clmc (inproceedings)

Abstract
This article summarizes our framework for learning biped locomotion using dynamical movement primitives based on nonlinear oscillators. Our ultimate goal is to establish a design principle of a controller in order to achieve natural human-like locomotion. We suggest dynamical movement primitives as a central pattern generator (CPG) of a biped robot, an approach we have previously proposed for learning and encoding complex human movements. Demonstrated trajectories are learned through movement primitives by locally weighted regression, and the frequency of the learned trajectories is adjusted automatically by a frequency adaptation algorithm based on phase resetting and entrainment of coupled oscillators. Numerical simulations and experimental implementation on a physical robot demonstrate the effectiveness of the proposed locomotion controller. Furthermore, we demonstrate that phase resetting contributes to robustness against external perturbations and environmental changes by numerical simulations and experiments.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Motor Primitives with Reinforcement Learning

Peters, J., Schaal, S.

In Proceedings of the 11th Joint Symposium on Neural Computation, http://resolver.caltech.edu/CaltechJSNC:2004.poster020, 2004, clmc (inproceedings)

Abstract
One of the major challenges in action generation for robotics and in the understanding of human motor control is to learn the "building blocks of move- ment generation," or more precisely, motor primitives. Recently, Ijspeert et al. [1, 2] suggested a novel framework how to use nonlinear dynamical systems as motor primitives. While a lot of progress has been made in teaching these mo- tor primitives using supervised or imitation learning, the self-improvement by interaction of the system with the environment remains a challenging problem. In this poster, we evaluate different reinforcement learning approaches can be used in order to improve the performance of motor primitives. For pursuing this goal, we highlight the difficulties with current reinforcement learning methods, and line out how these lead to a novel algorithm which is based on natural policy gradients [3]. We compare this algorithm to previous reinforcement learning algorithms in the context of dynamic motor primitive learning, and show that it outperforms these by at least an order of magnitude. We demonstrate the efficiency of the resulting reinforcement learning method for creating complex behaviors for automous robotics. The studied behaviors will include both discrete, finite tasks such as baseball swings, as well as complex rhythmic patterns as they occur in biped locomotion

am

[BibTex]

[BibTex]


no image
Atomic force microscope probe based controlled pushing for nanotribological characterization

Sitti, M.

IEEE/ASME Transactions on mechatronics, 9(2):343-349, IEEE, 2004 (article)

pi

[BibTex]

[BibTex]


no image
Dynamic behavior and simulation of nanoparticle sliding during nanoprobe-based positioning

Tafazzoli, A., Sitti, M.

In Proc. ASME International Mechanical Engineering Conference, 19, pages: 32, 2004 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Three-dimensional nanoscale manipulation and manufacturing using proximal probes: controlled pulling of polymer micro/nanofibers

Nain, A. S., Amon, C., Sitti, M.

In Mechatronics, 2004. ICM’04. Proceedings of the IEEE International Conference on, pages: 224-230, 2004 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Feedback error learning and nonlinear adaptive control

Nakanishi, J., Schaal, S.

Neural Networks, 17(10):1453-1465, 2004, clmc (article)

Abstract
In this paper, we present our theoretical investigations of the technique of feedback error learning (FEL) from the viewpoint of adaptive control. We first discuss the relationship between FEL and nonlinear adaptive control with adaptive feedback linearization, and show that FEL can be interpreted as a form of nonlinear adaptive control. Second, we present a Lyapunov analysis suggesting that the condition of strictly positive realness (SPR) associated with the tracking error dynamics is a sufficient condition for asymptotic stability of the closed-loop dynamics. Specifically, for a class of second order SISO systems, we show that this condition reduces to KD^2 > KP; where KP and KD are positive position and velocity feedback gains, respectively. Moreover, we provide a ÔpassivityÕ-based stability analysis which suggests that SPR of the tracking error dynamics is a necessary and sufficient condition for asymptotic hyperstability. Thus, the condition KD^2>KP mentioned above is not only a sufficient but also necessary condition to guarantee asymptotic hyperstability of FEL, i.e. the tracking error is bounded and asymptotically converges to zero. As a further point, we explore the adaptive control and FEL framework for feedforward control formulations, and derive an additional sufficient condition for asymptotic stability in the sense of Lyapunov. Finally, we present numerical simulations to illustrate the stability properties of FEL obtained from our mathematical analysis.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Computational approaches to motor learning by imitation

Schaal, S., Ijspeert, A., Billard, A.

In The Neuroscience of Social Interaction, (1431):199-218, (Editors: Frith, C. D.;Wolpert, D.), Oxford University Press, Oxford, 2004, clmc (inbook)

Abstract
Movement imitation requires a complex set of mechanisms that map an observed movement of a teacher onto one's own movement apparatus. Relevant problems include movement recognition, pose estimation, pose tracking, body correspondence, coordinate transformation from external to egocentric space, matching of observed against previously learned movement, resolution of redundant degrees-of-freedom that are unconstrained by the observation, suitable movement representations for imitation, modularization of motor control, etc. All of these topics by themselves are active research problems in computational and neurobiological sciences, such that their combination into a complete imitation system remains a daunting undertaking - indeed, one could argue that we need to understand the complete perception-action loop. As a strategy to untangle the complexity of imitation, this paper will examine imitation purely from a computational point of view, i.e. we will review statistical and mathematical approaches that have been suggested for tackling parts of the imitation problem, and discuss their merits, disadvantages and underlying principles. Given the focus on action recognition of other contributions in this special issue, this paper will primarily emphasize the motor side of imitation, assuming that a perceptual system has already identified important features of a demonstrated movement and created their corresponding spatial information. Based on the formalization of motor control in terms of control policies and their associated performance criteria, useful taxonomies of imitation learning can be generated that clarify different approaches and future research directions.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Micro-and nano-scale robotics

Sitti, M.

In American Control Conference, 2004. Proceedings of the 2004, 1, pages: 1-8, 2004 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Gecko inspired surface climbing robots

Menon, C., Murphy, M., Sitti, M.

In Robotics and Biomimetics, 2004. ROBIO 2004. IEEE International Conference on, pages: 431-436, 2004 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]

2003


no image
Dynamic movement primitives - A framework for motor control in humans and humanoid robots

Schaal, S.

In The International Symposium on Adaptive Motion of Animals and Machines, Kyoto, Japan, March 4-8, 2003, March 2003, clmc (inproceedings)

Abstract
Sensory-motor integration is one of the key issues in robotics. In this paper, we propose an approach to rhythmic arm movement control that is synchronized with an external signal based on exploiting a simple neural oscillator network. Trajectory generation by the neural oscillator is a biologically inspired method that can allow us to generate a smooth and continuous trajectory. The parameter tuning of the oscillators is used to generate a synchronized movement with wide intervals. We adopted the method for the drumming task as an example task. By using this method, the robot can realize synchronized drumming with wide drumming intervals in real time. The paper also shows the experimental results of drumming by a humanoid robot.

am

link (url) [BibTex]

2003


link (url) [BibTex]


New electro-optic effect: Sum-frequency generation from optically active liquids in the presence of a dc electric field
New electro-optic effect: Sum-frequency generation from optically active liquids in the presence of a dc electric field

Fischer, P., Buckingham, A., Beckwitt, K., Wiersma, D., Wise, F.

PHYSICAL REVIEW LETTERS, 91(17), 2003 (article)

Abstract
We report the observation of sum-frequency signals that depend linearly on an applied electrostatic field and that change sign with the handedness of an optically active solute. This recently predicted chiral electro-optic effect exists in the electric-dipole approximation. The static electric field gives rise to an electric-field-induced sum-frequency signal (an achiral third-order process) that interferes with the chirality-specific sum-frequency at second order. The cross-terms linear in the electrostatic field constitute the effect and may be used to determine the absolute sign of second- and third-order nonlinear-optical susceptibilities in isotropic media.

pf

DOI [BibTex]

DOI [BibTex]


Chiral and achiral contributions to sum-frequency generation from optically active solutions of binaphthol
Chiral and achiral contributions to sum-frequency generation from optically active solutions of binaphthol

Fischer, P., Wise, F., Albrecht, A.

JOURNAL OF PHYSICAL CHEMISTRY A, 107(40):8232-8238, 2003 (article)

Abstract
The nonlinear sum- and difference-frequency generation spectroscopies can be probes of molecular chirality in optically active systems. We present a tensorial analysis of the chirality-specific electric-dipolar sum-frequency-generation susceptibility and the achiral electric-quadrupolar and magnetic-dipolar nonlinearities at second order in isotropic media. The chiral and achiral contributions to the sum-frequency signal from the bulk of optically active solutions of 1,1'-bi-2-naphthol (2,2'-dehydroxy-1,1'-binaphthyl) can be distinguished, and the former dominates. Ab initio computations reveal the dramatic resonance enhancement that the isotropic component of the electric-dipolar three-wave mixing hyperpolarizability experiences. Away from resonance its magnitude rapidly decreases, as-unlike the vector component-it is zero in the static limit. The dispersion of the first hyperpolarizability is computed by a configuration interaction singles sum-over-states approach with explicit regard to the Franck-Condon active vibrational substructure for all resonant electronic states.

pf

DOI [BibTex]

DOI [BibTex]


no image
Synthetic gecko foot-hair micro/nano-structures as dry adhesives

Sitti, M., Fearing, R. S.

Journal of adhesion science and technology, 17(8):1055-1073, Taylor & Francis Group, 2003 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Teleoperated touch feedback from the surfaces at the nanoscale: modeling and experiments

Sitti, M., Hashimoto, H.

IEEE/ASME transactions on mechatronics, 8(2):287-298, IEEE, 2003 (article)

pi

[BibTex]

[BibTex]


no image
Bayesian backfitting

D’Souza, A., Vijayakumar, S., Schaal, S.

In Proceedings of the 10th Joint Symposium on Neural Computation (JSNC 2003), Irvine, CA, May 2003, 2003, clmc (inproceedings)

Abstract
We present an algorithm aimed at addressing both computational and analytical intractability of Bayesian regression models which operate in very high-dimensional, usually underconstrained spaces. Several domains of research frequently provide such datasets, including chemometrics [2], and human movement analysis [1]. The literature in nonparametric statistics provides interesting solutions such as Backfitting [3] and Partial Least Squares [4], which are extremely robust and efficient, yet lack a probabilistic interpretation that could place them in the context of current research in statistical learning algorithms that emphasize the estimation of confidence, posterior distributions, and model complexity. In order to achieve numerical robustness and low computational cost, we first derive a novel Bayesian interpretation of Backfitting (BB) as a computationally efficient regression algorithm. BBÕs learning complexity scales linearly with the input dimensionality by decoupling inference among individual input dimensions. We embed BB in an efficient, locally variational model selection mechanism that automatically grows the number of backfitting experts in a mixture-of-experts regression model. We demonstrate the effectiveness of the algorithm in performing principled regularization of model complexity when fitting nonlinear manifolds while avoiding the numerical hazards associated with highly underconstrained problems. We also note that this algorithm appears applicable in various areas of neural computation, e.g., in abstract models of computational neuroscience, or implementations of statistical learning on artificial systems.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Reinforcement learning for humanoid robotics

Peters, J., Vijayakumar, S., Schaal, S.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids2003), Karlsruhe, Germany, Sept.29-30, 2003, clmc (inproceedings)

Abstract
Reinforcement learning offers one of the most general framework to take traditional robotics towards true autonomy and versatility. However, applying reinforcement learning to high dimensional movement systems like humanoid robots remains an unsolved problem. In this paper, we discuss different approaches of reinforcement learning in terms of their applicability in humanoid robotics. Methods can be coarsely classified into three different categories, i.e., greedy methods, `vanilla' policy gradient methods, and natural gradient methods. We discuss that greedy methods are not likely to scale into the domain humanoid robotics as they are problematic when used with function approximation. `Vanilla' policy gradient methods on the other hand have been successfully applied on real-world robots including at least one humanoid robot. We demonstrate that these methods can be significantly improved using the natural policy gradient instead of the regular policy gradient. A derivation of the natural policy gradient is provided, proving that the average policy gradient of Kakade (2002) is indeed the true natural gradient. A general algorithm for estimating the natural gradient, the Natural Actor-Critic algorithm, is introduced. This algorithm converges to the nearest local minimum of the cost function with respect to the Fisher information metric under suitable conditions. The algorithm outperforms non-natural policy gradients by far in a cart-pole balancing evaluation, and for learning nonlinear dynamic motor primitives for humanoid robot control. It offers a promising route for the development of reinforcement learning for truly high dimensionally continuous state-action systems.

am

link (url) [BibTex]

link (url) [BibTex]


no image
High aspect ratio polymer micro/nano-structure manufacturing using nanoembossing, nanomolding and directed self-assembly

Sitti, M.

In ASME 2003 International Mechanical Engineering Congress and Exposition, pages: 293-297, 2003 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Nsf workshop on future directions in nano-scale systems, dynamics and control

Sitti, M.

In Automatic Control Conference (ACC), 2003 (inproceedings)

pi

[BibTex]

[BibTex]


no image
3-D nano-fiber manufacturing by controlled pulling of liquid polymers using nano-probes

Nain, A. S., Sitti, M.

In Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, 1, pages: 60-63, 2003 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Discovering imitation strategies through categorization of multi-cimensional data

Billard, A., Epars, Y., Schaal, S., Cheng, G.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, Oct. 27-31, 2003, clmc (inproceedings)

Abstract
An essential problem of imitation is that of determining Ówhat to imitateÓ, i.e. to determine which of the many features of the demonstration are relevant to the task and which should be reproduced. The strategy followed by the imitator can be modeled as a hierarchical optimization system, which minimizes the discrepancy between two multidimensional datasets. We consider imitation of a manipulation task. To classify across manipulation strategies, we apply a probabilistic analysis to data in Cartesian and joint spaces. We determine a general metric that optimizes the policy of task reproduction, following strategy determination. The model successfully discovers strategies in six different manipulation tasks and controls task reproduction by a full body humanoid robot. or the complete path followed by the demonstrator. We follow a similar taxonomy and apply it to the learning and reproduction of a manipulation task by a humanoid robot. We take the perspective that the features of the movements to imitate are those that appear most frequently, i.e. the invariants in time. The model builds upon previous work [3], [4] and is composed of a hierarchical time delay neural network that extracts invariant features from a manipulation task performed by a human demonstrator. The system analyzes the Carthesian trajectories of the objects and the joint

am

link (url) [BibTex]

link (url) [BibTex]


no image
Scaling reinforcement learning paradigms for motor learning

Peters, J., Vijayakumar, S., Schaal, S.

In Proceedings of the 10th Joint Symposium on Neural Computation (JSNC 2003), Irvine, CA, May 2003, 2003, clmc (inproceedings)

Abstract
Reinforcement learning offers a general framework to explain reward related learning in artificial and biological motor control. However, current reinforcement learning methods rarely scale to high dimensional movement systems and mainly operate in discrete, low dimensional domains like game-playing, artificial toy problems, etc. This drawback makes them unsuitable for application to human or bio-mimetic motor control. In this poster, we look at promising approaches that can potentially scale and suggest a novel formulation of the actor-critic algorithm which takes steps towards alleviating the current shortcomings. We argue that methods based on greedy policies are not likely to scale into high-dimensional domains as they are problematic when used with function approximation Ð a must when dealing with continuous domains. We adopt the path of direct policy gradient based policy improvements since they avoid the problems of unstabilizing dynamics encountered in traditional value iteration based updates. While regular policy gradient methods have demonstrated promising results in the domain of humanoid notor control, we demonstrate that these methods can be significantly improved using the natural policy gradient instead of the regular policy gradient. Based on this, it is proved that KakadeÕs Ôaverage natural policy gradientÕ is indeed the true natural gradient. A general algorithm for estimating the natural gradient, the Natural Actor-Critic algorithm, is introduced. This algorithm converges with probability one to the nearest local minimum in Riemannian space of the cost function. The algorithm outperforms nonnatural policy gradients by far in a cart-pole balancing evaluation, and offers a promising route for the development of reinforcement learning for truly high-dimensionally continuous state-action systems.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning attractor landscapes for learning motor primitives

Ijspeert, A., Nakanishi, J., Schaal, S.

In Advances in Neural Information Processing Systems 15, pages: 1547-1554, (Editors: Becker, S.;Thrun, S.;Obermayer, K.), Cambridge, MA: MIT Press, 2003, clmc (inproceedings)

Abstract
If globally high dimensional data has locally only low dimensional distributions, it is advantageous to perform a local dimensionality reduction before further processing the data. In this paper we examine several techniques for local dimensionality reduction in the context of locally weighted linear regression. As possible candidates, we derive local versions of factor analysis regression, principle component regression, principle component regression on joint distributions, and partial least squares regression. After outlining the statistical bases of these methods, we perform Monte Carlo simulations to evaluate their robustness with respect to violations of their statistical assumptions. One surprising outcome is that locally weighted partial least squares regression offers the best average results, thus outperforming even factor analysis, the theoretically most appealing of our candidate techniques.Ê

am

link (url) [BibTex]

link (url) [BibTex]


no image
Scaled teleoperation system for nano-scale interaction and manipulation

Sitti, M., Aruk, B., Shintani, H., Hashimoto, H.

Advanced Robotics, 17(3):275-291, Taylor & Francis Group, 2003 (article)

pi

[BibTex]

[BibTex]


no image
Manufacturing of two and three-dimensional micro/nanostructures by integrating optical tweezers with chemical assembly

Castelino, K., Satyanarayana, S., Sitti, M.

In Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, 1, pages: 56-59, 2003 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Atomic force microscope probe based controlled pushing for nano-tribological characterization

Sitti, M.

IEEE/ASME Transactions on Mechatronics, 8(3), 2003 (article)

pi

[BibTex]


no image
Learning from demonstration and adaptation of biped locomotion with dynamical movement primitives

Nakanishi, J., Morimoto, J., Endo, G., Schaal, S., Kawato, M.

In Workshop on Robot Learning by Demonstration, IEEE International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, Oct. 27-31, 2003, clmc (inproceedings)

Abstract
In this paper, we report on our research for learning biped locomotion from human demonstration. Our ultimate goal is to establish a design principle of a controller in order to achieve natural human-like locomotion. We suggest dynamical movement primitives as a CPG of a biped robot, an approach we have previously proposed for learning and encoding complex human movements. Demonstrated trajectories are learned through the movement primitives by locally weighted regression, and the frequency of the learned trajectories is adjusted automatically by a novel frequency adaptation algorithm based on phase resetting and entrainment of oscillators. Numerical simulations demonstrate the effectiveness of the proposed locomotion controller.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Movement planning and imitation by shaping nonlinear attractors

Schaal, S.

In Proceedings of the 12th Yale Workshop on Adaptive and Learning Systems, Yale University, New Haven, CT, 2003, clmc (inproceedings)

Abstract
Given the continuous stream of movements that biological systems exhibit in their daily activities, an account for such versatility and creativity has to assume that movement sequences consist of segments, executed either in sequence or with partial or complete overlap. Therefore, a fundamental question that has pervaded research in motor control both in artificial and biological systems revolves around identifying movement primitives (a.k.a. units of actions, basis behaviors, motor schemas, etc.). What are the fundamental building blocks that are strung together, adapted to, and created for ever new behaviors? This paper summarizes results that led to the hypothesis of Dynamic Movement Primitives (DMP). DMPs are units of action that are formalized as stable nonlinear attractor systems. They are useful for autonomous robotics as they are highly flexible in creating complex rhythmic (e.g., locomotion) and discrete (e.g., a tennis swing) behaviors that can quickly be adapted to the inevitable perturbations of a dy-namically changing, stochastic environment. Moreover, DMPs provide a formal framework that also lends itself to investigations in computational neuroscience. A recent finding that allows creating DMPs with the help of well-understood statistical learning methods has elevated DMPs from a more heuristic to a principled modeling approach, and, moreover, created a new foundation for imitation learning. Theoretical insights, evaluations on a humanoid robot, and behavioral and brain imaging data will serve to outline the framework of DMPs for a general approach to motor control and imitation in robotics and biology.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Computational approaches to motor learning by imitation

Schaal, S., Ijspeert, A., Billard, A.

Philosophical Transaction of the Royal Society of London: Series B, Biological Sciences, 358(1431):537-547, 2003, clmc (article)

Abstract
Movement imitation requires a complex set of mechanisms that map an observed movement of a teacher onto one's own movement apparatus. Relevant problems include movement recognition, pose estimation, pose tracking, body correspondence, coordinate transformation from external to egocentric space, matching of observed against previously learned movement, resolution of redundant degrees-of-freedom that are unconstrained by the observation, suitable movement representations for imitation, modularization of motor control, etc. All of these topics by themselves are active research problems in computational and neurobiological sciences, such that their combination into a complete imitation system remains a daunting undertaking - indeed, one could argue that we need to understand the complete perception-action loop. As a strategy to untangle the complexity of imitation, this paper will examine imitation purely from a computational point of view, i.e. we will review statistical and mathematical approaches that have been suggested for tackling parts of the imitation problem, and discuss their merits, disadvantages and underlying principles. Given the focus on action recognition of other contributions in this special issue, this paper will primarily emphasize the motor side of imitation, assuming that a perceptual system has already identified important features of a demonstrated movement and created their corresponding spatial information. Based on the formalization of motor control in terms of control policies and their associated performance criteria, useful taxonomies of imitation learning can be generated that clarify different approaches and future research directions.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Efficient charge recovery method for driving piezoelectric actuators with quasi-square waves

Campolo, D., Sitti, M., Fearing, R. S.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 50(3):237-244, IEEE, 2003 (article)

pi

[BibTex]

[BibTex]


no image
Synthetic gecko foot-hair micro/nano-structures for future wall-climbing robots

Sitti, M., Fearing, R. S.

In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on, 1, pages: 1164-1170, 2003 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Piezoelectrically actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax

Sitti, M.

IEEE/ASME transactions on mechatronics, 8(1):26-36, IEEE, 2003 (article)

pi

[BibTex]


no image
Biomimetic propulsion for a swimming surgical micro-robot

Edd, J., Payen, S., Rubinsky, B., Stoller, M. L., Sitti, M.

In Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on, 3, pages: 2583-2588, 2003 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]

1991


no image
Ways to smarter CAD-systems

Ehrlenspiel, K., Schaal, S.

In Proceedings of ICED’91Heurista, pages: 10-16, (Editors: Hubka), Edition, Schriftenreihe WDK 21. Zürich, 1991, clmc (inbook)

am

[BibTex]

1991


[BibTex]


no image
In vivo diabetic wound healing with nanofibrous scaffolds modified with gentamicin and recombinant human epidermal growth factor

Dwivedi, C., Pandey, I., Pandey, H., Patil, S., Mishra, S. B., Pandey, A. C., Zamboni, P., Ramteke, P. W., Singh, A. V.

Journal of Biomedical Materials Research Part A, 106(3):641-651, March (article)

Abstract
Abstract Diabetic wounds are susceptible to microbial infection. The treatment of these wounds requires a higher payload of growth factors. With this in mind, the strategy for this study was to utilize a novel payload comprising of Eudragit RL/RS 100 nanofibers carrying the bacterial inhibitor gentamicin sulfate (GS) in concert with recombinant human epidermal growth factor (rhEGF); an accelerator of wound healing. GS containing Eudragit was electrospun to yield nanofiber scaffolds, which were further modified by covalent immobilization of rhEGF to their surface. This novel fabricated nanoscaffold was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. The thermal behavior of the nanoscaffold was determined using thermogravimetric analysis and differential scanning calorimetry. In the in vitro antibacterial assays, the nanoscaffolds exhibited comparable antibacterial activity to pure gentemicin powder. In vivo work using female C57/BL6 mice, the nanoscaffolds induced faster wound healing activity in dorsal wounds compared to the control. The paradigm in this study presents a robust in vivo model to enhance the applicability of drug delivery systems in wound healing applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 641–651, 2018.

pi

link (url) DOI [BibTex]


link (url) DOI [BibTex]


no image
Robotics Research

Tong, Chi Hay, Furgale, Paul, Barfoot, Timothy D, Guizilini, Vitor, Ramos, Fabio, Chen, Yushan, T\uumová, Jana, Ulusoy, Alphan, Belta, Calin, Tenorth, Moritz, others

(article)

pi

[BibTex]

[BibTex]