Header logo is


2010


no image
Reinforcement learning of full-body humanoid motor skills

Stulp, F., Buchli, J., Theodorou, E., Schaal, S.

In Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, pages: 405-410, December 2010, clmc (inproceedings)

Abstract
Applying reinforcement learning to humanoid robots is challenging because humanoids have a large number of degrees of freedom and state and action spaces are continuous. Thus, most reinforcement learning algorithms would become computationally infeasible and require a prohibitive amount of trials to explore such high-dimensional spaces. In this paper, we present a probabilistic reinforcement learning approach, which is derived from the framework of stochastic optimal control and path integrals. The algorithm, called Policy Improvement with Path Integrals (PI2), has a surprisingly simple form, has no open tuning parameters besides the exploration noise, is model-free, and performs numerically robustly in high dimensional learning problems. We demonstrate how PI2 is able to learn full-body motor skills on a 34-DOF humanoid robot. To demonstrate the generality of our approach, we also apply PI2 in the context of variable impedance control, where both planned trajectories and gain schedules for each joint are optimized simultaneously.

am

link (url) [BibTex]

2010


link (url) [BibTex]


Thumb xl screen shot 2015 08 23 at 15.52.25
Enhanced Visual Scene Understanding through Human-Robot Dialog

Johnson-Roberson, M., Bohg, J., Kragic, D., Skantze, G., Gustafson, J., Carlson, R.

In Proceedings of AAAI 2010 Fall Symposium: Dialog with Robots, November 2010 (inproceedings)

am

pdf [BibTex]

pdf [BibTex]


Thumb xl screen shot 2015 08 23 at 15.18.17
Scene Representation and Object Grasping Using Active Vision

Gratal, X., Bohg, J., Björkman, M., Kragic, D.

In IROS’10 Workshop on Defining and Solving Realistic Perception Problems in Personal Robotics, October 2010 (inproceedings)

Abstract
Object grasping and manipulation pose major challenges for perception and control and require rich interaction between these two fields. In this paper, we concentrate on the plethora of perceptual problems that have to be solved before a robot can be moved in a controlled way to pick up an object. A vision system is presented that integrates a number of different computational processes, e.g. attention, segmentation, recognition or reconstruction to incrementally build up a representation of the scene suitable for grasping and manipulation of objects. Our vision system is equipped with an active robotic head and a robot arm. This embodiment enables the robot to perform a number of different actions like saccading, fixating, and grasping. By applying these actions, the robot can incrementally build a scene representation and use it for interaction. We demonstrate our system in a scenario for picking up known objects from a table top. We also show the system’s extendibility towards grasping of unknown and familiar objects.

am

video pdf slides [BibTex]

video pdf slides [BibTex]


Thumb xl after250measurementprmgoodlinespec
Strategies for multi-modal scene exploration

Bohg, J., Johnson-Roberson, M., Björkman, M., Kragic, D.

In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages: 4509-4515, October 2010 (inproceedings)

Abstract
We propose a method for multi-modal scene exploration where initial object hypothesis formed by active visual segmentation are confirmed and augmented through haptic exploration with a robotic arm. We update the current belief about the state of the map with the detection results and predict yet unknown parts of the map with a Gaussian Process. We show that through the integration of different sensor modalities, we achieve a more complete scene model. We also show that the prediction of the scene structure leads to a valid scene representation even if the map is not fully traversed. Furthermore, we propose different exploration strategies and evaluate them both in simulation and on our robotic platform.

am

video pdf DOI Project Page [BibTex]

video pdf DOI Project Page [BibTex]


Thumb xl screen shot 2015 08 23 at 01.22.09
Attention-based active 3D point cloud segmentation

Johnson-Roberson, M., Bohg, J., Björkman, M., Kragic, D.

In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages: 1165-1170, October 2010 (inproceedings)

Abstract
In this paper we present a framework for the segmentation of multiple objects from a 3D point cloud. We extend traditional image segmentation techniques into a full 3D representation. The proposed technique relies on a state-of-the-art min-cut framework to perform a fully 3D global multi-class labeling in a principled manner. Thereby, we extend our previous work in which a single object was actively segmented from the background. We also examine several seeding methods to bootstrap the graphical model-based energy minimization and these methods are compared over challenging scenes. All results are generated on real-world data gathered with an active vision robotic head. We present quantitive results over aggregate sets as well as visual results on specific examples.

am

pdf DOI [BibTex]

pdf DOI [BibTex]


no image
Relative Entropy Policy Search

Peters, J., Mülling, K., Altun, Y.

In Proceedings of the Twenty-Fourth National Conference on Artificial Intelligence, pages: 1607-1612, (Editors: Fox, M. , D. Poole), AAAI Press, Menlo Park, CA, USA, Twenty-Fourth National Conference on Artificial Intelligence (AAAI-10), July 2010 (inproceedings)

Abstract
Policy search is a successful approach to reinforcement learning. However, policy improvements often result in the loss of information. Hence, it has been marred by premature convergence and implausible solutions. As first suggested in the context of covariant policy gradients (Bagnell and Schneider 2003), many of these problems may be addressed by constraining the information loss. In this paper, we continue this path of reasoning and suggest the Relative Entropy Policy Search (REPS) method. The resulting method differs significantly from previous policy gradient approaches and yields an exact update step. It works well on typical reinforcement learning benchmark problems.

am ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Reinforcement learning of motor skills in high dimensions: A path integral approach

Theodorou, E., Buchli, J., Schaal, S.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 2397-2403, May 2010, clmc (inproceedings)

Abstract
Reinforcement learning (RL) is one of the most general approaches to learning control. Its applicability to complex motor systems, however, has been largely impossible so far due to the computational difficulties that reinforcement learning encounters in high dimensional continuous state-action spaces. In this paper, we derive a novel approach to RL for parameterized control policies based on the framework of stochastic optimal control with path integrals. While solidly grounded in optimal control theory and estimation theory, the update equations for learning are surprisingly simple and have no danger of numerical instabilities as neither matrix inversions nor gradient learning rates are required. Empirical evaluations demonstrate significant performance improvements over gradient-based policy learning and scalability to high-dimensional control problems. Finally, a learning experiment on a robot dog illustrates the functionality of our algorithm in a real-world scenario. We believe that our new algorithm, Policy Improvement with Path Integrals (PI2), offers currently one of the most efficient, numerically robust, and easy to implement algorithms for RL in robotics.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Inverse dynamics control of floating base systems using orthogonal decomposition

Mistry, M., Buchli, J., Schaal, S.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 3406-3412, May 2010, clmc (inproceedings)

Abstract
Model-based control methods can be used to enable fast, dexterous, and compliant motion of robots without sacrificing control accuracy. However, implementing such techniques on floating base robots, e.g., humanoids and legged systems, is non-trivial due to under-actuation, dynamically changing constraints from the environment, and potentially closed loop kinematics. In this paper, we show how to compute the analytically correct inverse dynamics torques for model-based control of sufficiently constrained floating base rigid-body systems, such as humanoid robots with one or two feet in contact with the environment. While our previous inverse dynamics approach relied on an estimation of contact forces to compute an approximate inverse dynamics solution, here we present an analytically correct solution by using an orthogonal decomposition to project the robot dynamics onto a reduced dimensional space, independent of contact forces. We demonstrate the feasibility and robustness of our approach on a simulated floating base bipedal humanoid robot and an actual robot dog locomoting over rough terrain.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Fast, robust quadruped locomotion over challenging terrain

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 2665-2670, May 2010, clmc (inproceedings)

Abstract
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates, (2) a body trajectory optimizer based on the Zero-Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrain of varying difficulty levels. We demonstrate the generalization ability of this controller by presenting test results from an independent external test team on terrains that have never been shown to us.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screen shot 2015 08 23 at 14.17.02
Learning Grasping Points with Shape Context

Bohg, J., Kragic, D.

Robotics and Autonomous Systems, 58(4):362-377, North-Holland Publishing Co., Amsterdam, The Netherlands, The Netherlands, April 2010 (article)

Abstract
This paper presents work on vision based robotic grasping. The proposed method adopts a learning framework where prototypical grasping points are learnt from several examples and then used on novel objects. For representation purposes, we apply the concept of shape context and for learning we use a supervised learning approach in which the classifier is trained with labelled synthetic images. We evaluate and compare the performance of linear and non-linear classifiers. Our results show that a combination of a descriptor based on shape context with a non-linear classification algorithm leads to a stable detection of grasping points for a variety of objects.

am

pdf link (url) DOI [BibTex]

pdf link (url) DOI [BibTex]


no image
Accelerometer-based Tilt Estimation of a Rigid Body with only Rotational Degrees of Freedom

Trimpe, S., D’Andrea, R.

In Proceedings of the IEEE International Conference on Robotics and Automation, 2010 (inproceedings)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Policy learning algorithmis for motor learning (Algorithmen zum automatischen Erlernen von Motorfähigkigkeiten)

Peters, J., Kober, J., Schaal, S.

Automatisierungstechnik, 58(12):688-694, 2010, clmc (article)

Abstract
Robot learning methods which allow au- tonomous robots to adapt to novel situations have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to ful- fill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics. If possible, scaling was usually only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general ap- proach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human- like performance. For doing so, we study two major components for such an approach, i. e., firstly, we study policy learning algo- rithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structu- res for task representation and execution.

am

link (url) [BibTex]


no image
A Bayesian approach to nonlinear parameter identification for rigid-body dynamics

Ting, J., DSouza, A., Schaal, S.

Neural Networks, 2010, clmc (article)

Abstract
For complex robots such as humanoids, model-based control is highly beneficial for accurate tracking while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom lightweight systems, conventional identification of rigid body dynamics models using CAD data and actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method is data-driven parameter estimation, but significant noise in measured and inferred variables affects it adversely. Moreover, standard estimation procedures may give physically inconsistent results due to unmodeled nonlinearities or insufficiently rich data. This paper addresses these problems, proposing a Bayesian system identification technique for linear or piecewise linear systems. Inspired by Factor Analysis regression, we develop a computationally efficient variational Bayesian regression algorithm that is robust to ill-conditioned data, automatically detects relevant features, and identifies input and output noise. We evaluate our approach on rigid body parameter estimation for various robotic systems, achieving an error of up to three times lower than other state-of-the-art machine learning methods.

am

link (url) [BibTex]


no image
A first optimal control solution for a complex, nonlinear, tendon driven neuromuscular finger model

Theodorou, E. A., Todorov, E., Valero-Cuevas, F.

Proceedings of the ASME 2010 Summer Bioengineering Conference August 30-September 2, 2010, Naples, Florida, USA, 2010, clmc (article)

Abstract
In this work we present the first constrained stochastic op- timal feedback controller applied to a fully nonlinear, tendon driven index finger model. Our model also takes into account an extensor mechanism, and muscle force-length and force-velocity properties. We show this feedback controller is robust to noise and perturbations to the dynamics, while successfully handling the nonlinearities and high dimensionality of the system. By ex- tending prior methods, we are able to approximate physiological realism by ensuring positivity of neural commands and tendon tensions at all timesthus can, for the first time, use the optimal control framework to predict biologically plausible tendon tensions for a nonlinear neuromuscular finger model. METHODS 1 Muscle Model The rigid-body triple pendulum finger model with slightly viscous joints is actuated by Hill-type muscle models. Joint torques are generated by the seven muscles of the index fin-

am

PDF [BibTex]

PDF [BibTex]


no image
Locally weighted regression for control

Ting, J., Vijayakumar, S., Schaal, S.

In Encyclopedia of Machine Learning, pages: 613-624, (Editors: Sammut, C.;Webb, G. I.), Springer, 2010, clmc (inbook)

Abstract
This is article addresses two topics: learning control and locally weighted regression.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Are reaching movements planned in kinematic or dynamic coordinates?

Ellmer, A., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2010), Naples, Florida, 2010, 2010, clmc (inproceedings)

Abstract
Whether human reaching movements are planned and optimized in kinematic (task space) or dynamic (joint or muscle space) coordinates is still an issue of debate. The first hypothesis implies that a planner produces a desired end-effector position at each point in time during the reaching movement, whereas the latter hypothesis includes the dynamics of the muscular-skeletal control system to produce a continuous end-effector trajectory. Previous work by Wolpert et al (1995) showed that when subjects were led to believe that their straight reaching paths corresponded to curved paths as shown on a computer screen, participants adapted the true path of their hand such that they would visually perceive a straight line in visual space, despite that they actually produced a curved path. These results were interpreted as supporting the stance that reaching trajectories are planned in kinematic coordinates. However, this experiment could only demonstrate that adaptation to altered paths, i.e. the position of the end-effector, did occur, but not that the precise timing of end-effector position was equally planned, i.e., the trajectory. Our current experiment aims at filling this gap by explicitly testing whether position over time, i.e. velocity, is a property of reaching movements that is planned in kinematic coordinates. In the current experiment, the velocity profiles of cursor movements corresponding to the participant's hand motions were skewed either to the left or to the right; the path itself was left unaltered. We developed an adaptation paradigm, where the skew of the velocity profile was introduced gradually and participants reported no awareness of any manipulation. Preliminary results indicate that the true hand motion of participants did not alter, i.e. there was no adaptation so as to counterbalance the introduced skew. However, for some participants, peak hand velocities were lowered for higher skews, which suggests that participants interpreted the manipulation as mere noise due to variance in their own movement. In summary, for a visuomotor transformation task, the hypothesis of a planned continuous end-effector trajectory predicts adaptation to a modified velocity profile. The current experiment found no systematic adaptation under such transformation, but did demonstrate an effect that is more in accordance that subjects could not perceive the manipulation and rather interpreted as an increase of noise.

am

[BibTex]

[BibTex]


no image
Dzyaloshinskii-Moriya interactions in systems with fabrication induced strain gradients: ab-initio study

Beck, P., Fähnle, M

{Journal of Magnetism and Magnetic Materials}, 322, pages: 3701-3703, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
On the nature of displacement bursts during nanoindentation of ultrathin Ni films on sapphire

Rabkin, E., Deuschle, J. K., Baretzky, B.

{Acta Materialia}, 58, pages: 1589-1598, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Nanospheres generate out-of-plane magnetization

Amaladass, E., Ludescher, B., Schütz, G., Tyliszczak, T., Lee, M., Eimüller, T.

{Journal of Applied Physics}, 107, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Absence of element specific ferromagnetism in Co doped ZnO investigated by soft X-ray resonant reflectivity

Goering, E., Brück, S., Tietze, T., Jakob, G., Gacic, M., Adrian, H.

In 200, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Probing the local magnetization dynamics in large systems with spatial inhomogeneity

Li, J, Lee, M.-S., Amaladass, E., He, W., Eimüller, T.

In 200, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Temperature dependence of the magnetic properties of L10-FePt nanostructures and films

Bublat, T., Goll, D.

{Journal of Applied Physics}, 108(11), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Wetting of grain boundaries in Al by the solid Al3Mg2 phase

Straumal, B. B., Baretzky, B., Kogtenkova, O. A., Straumal, A. B., Sidorenko, A. S.

In 45, pages: 2057-2061, Athens, Greek, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Damping of near-adiabatic magnetization dynamics by excitations of electron-hole pairs

Seib, J., Steiauf, D., Fähnle, M.

In 200, Karlsruhe, Germany, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic properties of Fe nanoclusters on Cu(111) studied with X-ray magnetic circular dichroism

Fauth, K., Ballentine, G., Praetorius, C., Kleibert, A., Wilken, N., Voitkans, A., Meiwes-Broer, K.-H.

{Physica Status Solidi B}, 247(5):1170-1179, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Optimality in Neuromuscular Systems

Theodorou, E. A., Valero-Cuevas, F.

In 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, clmc (inproceedings)

Abstract
Abstract? We provide an overview of optimal control meth- ods to nonlinear neuromuscular systems and discuss their lim- itations. Moreover we extend current optimal control methods to their application to neuromuscular models with realistically numerous musculotendons; as most prior work is limited to torque-driven systems. Recent work on computational motor control has explored the used of control theory and esti- mation as a conceptual tool to understand the underlying computational principles of neuromuscular systems. After all, successful biological systems regularly meet conditions for stability, robustness and performance for multiple classes of complex tasks. Among a variety of proposed control theory frameworks to explain this, stochastic optimal control has become a dominant framework to the point of being a standard computational technique to reproduce kinematic trajectories of reaching movements (see [12]) In particular, we demonstrate the application of optimal control to a neuromuscular model of the index finger with all seven musculotendons producing a tapping task. Our simu- lations include 1) a muscle model that includes force- length and force-velocity characteristics; 2) an anatomically plausible biomechanical model of the index finger that includes a tendi- nous network for the extensor mechanism and 3) a contact model that is based on a nonlinear spring-damper attached at the end effector of the index finger. We demonstrate that it is feasible to apply optimal control to systems with realistically large state vectors and conclude that, while optimal control is an adequate formalism to create computational models of neuro- musculoskeletal systems, there remain important challenges and limitations that need to be considered and overcome such as contact transitions, curse of dimensionality, and constraints on states and controls.

am

PDF [BibTex]

PDF [BibTex]


no image
Efficient learning and feature detection in high dimensional regression

Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.

Neural Computation, 22, pages: 831-886, 2010, clmc (article)

Abstract
We present a novel algorithm for efficient learning and feature selection in high- dimensional regression problems. We arrive at this model through a modification of the standard regression model, enabling us to derive a probabilistic version of the well-known statistical regression technique of backfitting. Using the Expectation- Maximization algorithm, along with variational approximation methods to overcome intractability, we extend our algorithm to include automatic relevance detection of the input features. This Variational Bayesian Least Squares (VBLS) approach retains its simplicity as a linear model, but offers a novel statistically robust â??black- boxâ? approach to generalized linear regression with high-dimensional inputs. It can be easily extended to nonlinear regression and classification problems. In particular, we derive the framework of sparse Bayesian learning, e.g., the Relevance Vector Machine, with VBLS at its core, offering significant computational and robustness advantages for this class of methods. We evaluate our algorithm on synthetic and neurophysiological data sets, as well as on standard regression and classification benchmark data sets, comparing it with other competitive statistical approaches and demonstrating its suitability as a drop-in replacement for other generalized linear regression techniques.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Statics and dynamics of simple fluids on chemically patterned substrates

Dörfler, F.

Universität Stuttgart, Stuttgart, Germany, 2010 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Nanoscale imaging using deep ultraviolet digital holographic microscopy

Faridian, A., Hopp, D., Pedrini, G., Eigenthaler, U., Hirscher, M., Osten, W.

{Optics Express}, 18(13):14159-14164, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Metal-organic frameworks for hydrogen storage

Hirscher, M., Panella, B., Schmitz, B.

{Microporous and Mesoporous Materials}, 129, pages: 335-339, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Samarium-cobalt 2:17 magnets: analysis of the coercive field of Sm2(CoFeCuZr)17 high-temperature permanent magnets

Goll, D., Stadelmaier, H. H., Kronmüller, H.

{Scripta Materialia}, 63, pages: 243-245, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Low-temperature growth of silicon nanotubes and nanowires on amorphous substrates

Mbenkum, B. N., Schneider, A. S., Schütz, G., Xu, C., Richter, G., van Aken, P. A., Majer, G., Spatz, J. P.

{ACS Nano}, 4(4):1805-1812, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Physisorption in porous materials

Hirscher, M., Panella, B.

In Handbook of Hydrogen Storage, pages: 39-62, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010 (incollection)

mms

[BibTex]

[BibTex]


no image
Formation and mobility of protonic charge carriers in methyl sulfonic acid-water mixtures: A model for sulfonic acid based ionomers at low degree of hydration

Telfah, A., Majer, G., Kreuer, K. D., Schuster, M., Maier, J.

{Solid State Ionics}, 181, pages: 461-465, 2010 (article)

mms

[BibTex]

[BibTex]


no image
Magnetization reversal of Fe/Gd multilayers on self-assembled arrays of nanospheres

Amaladass, E., Eimüller, T., Ludescher, B., Tyliszczak, T., Schütz, G.

In 200, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Continuous photobleaching to study the growth modes of focal adhesions

de Beer, A. G. F., Majer, G., Roke, S., Spatz, J. P.

{Journal of Adhesion Science and Technology}, 24, pages: 2323-2334, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic antivortex-core reversal by circular-rotational spin currents

Kamionka, T., Martens, M., Chou, K. W., Curcic, M., Drews, A., Schütz, G., Tyliszczak, T., Stoll, H., Van Waeyenberge, B., Meier, G.

{Physical Review Letters}, 105, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Extension of Yafet\textquotesingles theory of spin relaxation to ferromagnets

Steiauf, D., Illg, C., Fähnle, M.

{Journal of Magnetism and Magnetic Materials}, 322, pages: L5-L7, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Stochastic Differential Dynamic Programming

Theodorou, E., Tassa, Y., Todorov, E.

In the proceedings of American Control Conference (ACC 2010) , 2010, clmc (article)

Abstract
We present a generalization of the classic Differential Dynamic Programming algorithm. We assume the existence of state- and control-dependent process noise, and proceed to derive the second-order expansion of the cost-to-go. Despite having quartic and cubic terms in the initial expression, we show that these vanish, leaving us with the same quadratic structure as standard DDP.

am

PDF [BibTex]

PDF [BibTex]


no image
Learning Policy Improvements with Path Integrals

Theodorou, E. A., Buchli, J., Schaal, S.

In International Conference on Artificial Intelligence and Statistics (AISTATS 2010), 2010, clmc (inproceedings)

Abstract
With the goal to generate more scalable algo- rithms with higher efficiency and fewer open parameters, reinforcement learning (RL) has recently moved towards combining classi- cal techniques from optimal control and dy- namic programming with modern learning techniques from statistical estimation the- ory. In this vein, this paper suggests the framework of stochastic optimal control with path integrals to derive a novel approach to RL with parametrized policies. While solidly grounded in value function estimation and optimal control based on the stochastic Hamilton-Jacobi-Bellman (HJB) equations, policy improvements can be transformed into an approximation problem of a path inte- gral which has no open parameters other than the exploration noise. The resulting algorithm can be conceived of as model- based, semi-model-based, or even model free, depending on how the learning problem is structured. Our new algorithm demon- strates interesting similarities with previous RL research in the framework of proba- bility matching and provides intuition why the slightly heuristically motivated proba- bility matching approach can actually per- form well. Empirical evaluations demon- strate significant performance improvements over gradient-based policy learning and scal- ability to high-dimensional control problems. We believe that Policy Improvement with Path Integrals (PI2) offers currently one of the most efficient, numerically robust, and easy to implement algorithms for RL based on trajectory roll-outs.

am

PDF [BibTex]

PDF [BibTex]


no image
Learning optimal control solutions: a path integral approach

Theodorou, E., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2010), Naples, Florida, 2010, 2010, clmc (inproceedings)

Abstract
Investigating principles of human motor control in the framework of optimal control has had a long tradition in neural control of movement, and has recently experienced a new surge of investigations. Ideally, optimal control problems are addresses as a reinforcement learning (RL) problem, which would allow to investigate both the process of acquiring an optimal control solution as well as the solution itself. Unfortunately, the applicability of RL to complex neural and biomechanics systems has been largely impossible so far due to the computational difficulties that arise in high dimensional continuous state-action spaces. As a way out, research has focussed on computing optimal control solutions based on iterative optimal control methods that are based on linear and quadratic approximations of dynamical models and cost functions. These methods require perfect knowledge of the dynamics and cost functions while they are based on gradient and Newton optimization schemes. Their applicability is also restricted to low dimensional problems due to problematic convergence in high dimensions. Moreover, the process of computing the optimal solution is removed from the learning process that might be plausible in biology. In this work, we present a new reinforcement learning method for learning optimal control solutions or motor control. This method, based on the framework of stochastic optimal control with path integrals, has a very solid theoretical foundation, while resulting in surprisingly simple learning algorithms. It is also possible to apply this approach without knowledge of the system model, and to use a wide variety of complex nonlinear cost functions for optimization. We illustrate the theoretical properties of this approach and its applicability to learning motor control tasks for reaching movements and locomotion studies. We discuss its applicability to learning desired trajectories, variable stiffness control (co-contraction), and parameterized control policies. We also investigate the applicability to signal dependent noise control systems. We believe that the suggested method offers one of the easiest to use approaches to learning optimal control suggested in the literature so far, which makes it ideally suited for computational investigations of biological motor control.

am

[BibTex]

[BibTex]


no image
Lateral transport of thermal capillary waves

Smith, T. H. R., Vasilyev, O., Maciolek, A., Schmidt, M.

{Europhysics Letters}, 89(1), 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The formation and propagation of flux avalanches in tailored MgB2 films

Treiber, S., Albrecht, J.

{New Journal of Physics}, 12, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct imaging of current induced magnetic vortex gyration in an asymmetric potential well

Bisig, A., Rhensius, J., Kammerer, M., Curcic, M., Stoll, H., Schütz, G., Van Waeyenberge, B., Chou, K. W., Tyliszczak, T., Heyderman, L. J., Krzyk, S., von Bieren, A., Kläui, M.

{Applied Physics Letters}, 96, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Induced magnetism of carbon atoms at the graphene/Ni(111) interface

Weser, M., Rehder, Y., Horn, K., Sicot, M., Fonin, M., Preobrajenski, A. B., Voloshina, E. N., Goering, E., Dedkov, Y. S.

{Applied Physics Letters}, 96, 2010 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Photon counting system for time-resolved experiments in multibunch mode

Puzic, A., Korhonen, T., Kalantari, B., Raabe, J., Quitmann, C., Jüllig, P., Bommer, L., Goll, D., Schütz, G., Wintz, S., Strache, T., Körner, M., Markó, D., Bunce, C., Fassbender, J.

{Synchrotron Radiation News}, 23(2):26-32, 2010 (article)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]