Header logo is


2012


no image
The Balancing Cube: A Dynamic Sculpture as Test Bed for Distributed Estimation and Control

Trimpe, S., D’Andrea, R.

IEEE Control Systems Magazine, 32(6):48-75, December 2012 (article)

am ics

DOI [BibTex]

2012


DOI [BibTex]


Thumb xl screen shot 2015 08 23 at 13.56.29
Towards Multi-DOF model mediated teleoperation: Using vision to augment feedback

Willaert, B., Bohg, J., Van Brussel, H., Niemeyer, G.

In IEEE International Workshop on Haptic Audio Visual Environments and Games (HAVE), pages: 25-31, October 2012 (inproceedings)

Abstract
In this paper, we address some of the challenges that arise as model-mediated teleoperation is applied to systems with multiple degrees of freedom and multiple sensors. Specifically we use a system with position, force, and vision sensors to explore an environment geometry in two degrees of freedom. The inclusion of vision is proposed to alleviate the difficulties of estimating an increasing number of environment properties. Vision can furthermore increase the predictive nature of model-mediated teleoperation, by effectively predicting touch feedback before the slave is even in contact with the environment. We focus on the case of estimating the location and orientation of a local surface patch at the contact point between the slave and the environment. We describe the various information sources with their respective limitations and create a combined model estimator as part of a multi-d.o.f. model-mediated controller. An experiment demonstrates the feasibility and benefits of utilizing vision sensors in teleoperation.

am

DOI [BibTex]

DOI [BibTex]


Thumb xl sankaran iros 20121
Failure Recovery with Shared Autonomy

Sankaran, B., Pitzer, B., Osentoski, S.

In International Conference on Intelligent Robots and Systems, October 2012 (inproceedings)

Abstract
Building robots capable of long term autonomy has been a long standing goal of robotics research. Such systems must be capable of performing certain tasks with a high degree of robustness and repeatability. In the context of personal robotics, these tasks could range anywhere from retrieving items from a refrigerator, loading a dishwasher, to setting up a dinner table. Given the complexity of tasks there are a multitude of failure scenarios that the robot can encounter, irrespective of whether the environment is static or dynamic. For a robot to be successful in such situations, it would need to know how to recover from failures or when to ask a human for help. This paper, presents a novel shared autonomy behavioral executive to addresses these issues. We demonstrate how this executive combines generalized logic based recovery and human intervention to achieve continuous failure free operation. We tested the systems over 250 trials of two different use case experiments. Our current algorithm drastically reduced human intervention from 26% to 4% on the first experiment and 46% to 9% on the second experiment. This system provides a new dimension to robot autonomy, where robots can exhibit long term failure free operation with minimal human supervision. We also discuss how the system can be generalized.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl bottlehandovergrasp
Task-Based Grasp Adaptation on a Humanoid Robot

Bohg, J., Welke, K., León, B., Do, M., Song, D., Wohlkinger, W., Aldoma, A., Madry, M., Przybylski, M., Asfour, T., Marti, H., Kragic, D., Morales, A., Vincze, M.

In 10th IFAC Symposium on Robot Control, SyRoCo 2012, Dubrovnik, Croatia, September 5-7, 2012., pages: 779-786, September 2012 (inproceedings)

Abstract
In this paper, we present an approach towards autonomous grasping of objects according to their category and a given task. Recent advances in the field of object segmentation and categorization as well as task-based grasp inference have been leveraged by integrating them into one pipeline. This allows us to transfer task-specific grasp experience between objects of the same category. The effectiveness of the approach is demonstrated on the humanoid robot ARMAR-IIIa.

am

Video pdf DOI [BibTex]

Video pdf DOI [BibTex]


no image
Surgical Instrument Vibrations are a Construct-Valid Measure of Technical Skill in Robotic Peg Transfer and Suturing Tasks

Bark, K., Gomez, E. D., Rivera, C., McMahan, W., Remington, A., Murayama, K., Lee, D. I., Dumon, K., Williams, N., Kuchenbecker, K. J.

In Proc. Hamlyn Symposium on Medical Robotics, pages: 50-51, London, England, July 2012, Oral presentation given by Bark (inproceedings)

hi

[BibTex]

[BibTex]


no image
Evaluation of Tactile Feedback Methods for Wrist Rotation Guidance

Stanley, A. A., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 5(3):240-251, July 2012 (article)

hi

[BibTex]

[BibTex]


Thumb xl thumb screen shot 2012 10 06 at 11.48.38 am
Visual Servoing on Unknown Objects

Gratal, X., Romero, J., Bohg, J., Kragic, D.

Mechatronics, 22(4):423-435, Elsevier, June 2012, Visual Servoing \{SI\} (article)

Abstract
We study visual servoing in a framework of detection and grasping of unknown objects. Classically, visual servoing has been used for applications where the object to be servoed on is known to the robot prior to the task execution. In addition, most of the methods concentrate on aligning the robot hand with the object without grasping it. In our work, visual servoing techniques are used as building blocks in a system capable of detecting and grasping unknown objects in natural scenes. We show how different visual servoing techniques facilitate a complete grasping cycle.

am ps

Grasping sequence video Offline calibration video Pdf DOI [BibTex]

Grasping sequence video Offline calibration video Pdf DOI [BibTex]


no image
Spectral Subtraction of Robot Motion Noise for Improved Vibrotactile Event Detection

McMahan, W., Kuchenbecker, K. J.

In Haptics: Perception, Devices, Mobility, and Communication: Proc. EuroHaptics, Part I, 7282, pages: 326-337, Lecture Notes in Computer Science, Springer, Tampere, Finland, June 2012, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Movement Segmentation and Recognition for Imitation Learning

Meier, F., Theodorou, E., Schaal, S.

In Seventeenth International Conference on Artificial Intelligence and Statistics, La Palma, Canary Islands, Fifteenth International Conference on Artificial Intelligence and Statistics , April 2012 (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


no image
Creating realistic virtual textures from contact acceleration data

Romano, J. M., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 5(2):109-119, April 2012, Cover article (article)

hi

[BibTex]

[BibTex]


no image
Simon Game with Data-driven Visuo-audio-haptic Buttons

Castillo, P., Romano, J. M., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012 (misc)

hi

[BibTex]

[BibTex]


no image
Refined Methods for Creating Realistic Haptic Virtual Textures from Tool-Mediated Contact Acceleration Data

Culbertson, H., Romano, J. M., Castillo, P., Mintz, M., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 385-391, Vancouver, Canada, March 2012, Poster presentation given by Culbertson (inproceedings)

hi

[BibTex]

[BibTex]


no image
VerroTouch: Detection of Instrument Vibrations for Haptic Feedback and Skill Assessment in Robotic Surgery

Gomez, E. D., Bark, K., McMahan, W., Rivera, C., Remington, A., Lee, D. I., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), San Diego, California, USA, March 2012, Emerging Technology Poster presentation given by Gomez. Poster available at \href{http://thesagesmeeting.org/}{http://thesagesmeeting.org/} (inproceedings)

hi

[BibTex]

[BibTex]


no image
Haptic Vibration Feedback for a Teleoperated Ground Vehicle

Healey, S. K., McMahan, W., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012 (misc)

hi

[BibTex]

[BibTex]


no image
A Biofidelic CPR Manikin With Programmable Pneumatic Damping

Stanley, A. A., Healey, S. K., Maltese, M. R., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012, Finalist for Best Hands-on Demonstration Award (misc)

hi

[BibTex]

[BibTex]


no image
StrokeSleeve: Real-Time Vibrotactile Feedback for Motion Guidance

Bark, K., Cha, E., Tan, F., Jax, S. A., Buxbaum, L. J., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, Vancouver, Canada, March 2012 (misc)

hi

[BibTex]

[BibTex]


no image
Pen Tablet Drawing Program with Haptic Textures

Castillo, P., Romano, J. M., Culbertson, H., Mintz, M., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012 (misc)

hi

[BibTex]

[BibTex]


no image
Using Accelerometers to Localize Tactile Contact Events on a Robot Arm

McMahan, W., Romano, J. M., Kuchenbecker, K. J.

In Proc. Workshop on Advances in Tactile Sensing and Touch-Based Human-Robot Interaction, ACM/IEEE International Conference on Human-Robot Interaction, Boston, Massachusetts, March 2012, Oral presentation given by McMahan (inproceedings)

hi

[BibTex]

[BibTex]


no image
Exploring Presentation Timing through Haptic Reminders

Tam, D., Kuchenbecker, K. J., MacLean, K., McGrenere, J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012 (misc)

hi

[BibTex]

[BibTex]


no image
HALO: Haptic Alerts for Low-hanging Obstacles in White Cane Navigation

Wang, Y., Koch, E., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012, Finalist for Best Hands-on Demonstration Award (misc)

hi

[BibTex]

[BibTex]


no image
VerroTeach: Visuo-audio-haptic Training for Dental Caries Detection

Maggio, M. P., Parajon, R., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012, {B}est Demonstration Award (three-way tie) (misc)

hi

[BibTex]

[BibTex]


no image
Recreating the feel of the human chest in a CPR manikin via programmable pneumatic damping

Stanley, A. A., Healey, S. K., Maltese, M. R., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 37-44, Vancouver, Canada, March 2012, Oral presentation given by Stanley (inproceedings)

hi

[BibTex]

[BibTex]


no image
HALO: Haptic Alerts for Low-hanging Obstacles in White Cane Navigation

Wang, Y., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 527-532, Vancouver, Canada, March 2012, Poster presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


Thumb xl nao2
Emotionally Assisted Human-Robot Interaction Using a Wearable Device for Reading Facial Expressions

Gruebler, A., Berenz, V., Suzuki, K.

Advanced Robotics, 26(10):1143-1159, 2012 (article)

am

link (url) DOI [BibTex]


no image
From Dynamic Movement Primitives to Associative Skill Memories

Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., Schaal, S.

Robotics and Autonomous Systems, 2012 (article)

am

Project Page [BibTex]

Project Page [BibTex]


Thumb xl screen shot 2018 05 04 at 11.34.02
Estimation of MIMO Closed-Loop Poles using Transfer Function Data

Vardar, Y.

Eindhoven University of Technology, the Netherlands, 2012 (mastersthesis)

Abstract
For the development of high-tech systems such as lithographic positioning systems, throughput and accuracy are the main requirements. Nowadays, the trend to reach demanded accuracy and throughput levels is designing lightweight and consequently more flexible systems. To control these systems with a more effective and less conservative way, control design should go beyond the traditional rigid control and cope with the flexibilities that limit achievable bandwidth and performance. Therefore, conventional loop shaping methods are not sufficient to reach the performance criterions. Since obtaining an accurate parametric model is very complex and time-consuming for these high-tech systems, using well-developed model-based controller synthesis methods is also not a superior option. To achieve desired performance criterions, one solution can be implemented is reducing the gap between model-based and data-based control synthesis methods. In previous research, a method was developed to define the dynamic behavior of the system without a need for a parametric model. By this method transfer function data (TFD), which provides the information on the whole s-plane can be obtained from frequency response data (FRD) of the system. This innovation was a very important step to use data-based techniques for model-based controller synthesis methods. In this thesis firstly the standard technique to obtain TFD defined in [2] is extended. This standard technique to obtain TFD is not compatible with systems with pure integrators. To extend the methodology also for those systems, two techniques, which are altering the contour and filtering the system, are proposed. Then, the accuracy of TFD is investigated in detail. It is shown that the accuracy of TFD depends on the quality of FRD obtained and the computation techniques used to calculate TFD. Then, a technique which enables to determine the closed-loop poles of a MIMO system using TFD is discussed. The validity of the technique is proven with the help of complex function theory and calculus. Also, the factors that prevent determination of the closed-loop poles are discussed. In addition, it is observed that the accuracy of the closed-loop determination method depends on the quality of obtained TFD and the computation techniques. The proposed theory to obtain TFD and determination of closed-loop poles is validated with experiments conducted to a prototype lightweight system. Also, using experimental frequency response data of NXT-A7 test rig, the success of the proposed methodology is validated also for complex systems. Through these experimental results, it can be concluded that this new technique could be very advantageous in terms of ease of use and accuracy to determine the closed-loop poles of a MIMO lightly damped system.

hi

[BibTex]

[BibTex]


no image
Event-based State Estimation with Switching Static-gain Observers

Trimpe, S.

In Proceedings of the 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems, 2012 (inproceedings)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl nao
Usability benchmarks of the Targets-Drives-Means robotic architecture

Berenz, V., Suzuki, K.

In 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), Osaka, Japan, November 29 - Dec. 1, 2012, pages: 514-519, 2012 (inproceedings)

am

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Event-based State Estimation with Variance-Based Triggering

Trimpe, S., D’Andrea, R.

In Proceedings of the 51st IEEE Conference on Decision and Control, 2012 (inproceedings)

am ics

PDF Supplementary material DOI [BibTex]

PDF Supplementary material DOI [BibTex]


no image
VerroTeach: Visuo-audio-haptic Training for Dental Caries Detection

Maggio, M. P., Parajon, R., Kuchenbecker, K. J.

In Proc. Annual American Dental Educator’s Association (ADEA) Conference, Orlando, Florida, 2012, Oral presentation given by Maggio (inproceedings)

hi

[BibTex]

[BibTex]


no image
Inverse dynamics with optimal distribution of contact forces for the control of legged robots

Righetti, L., Schaal, S.

In Dynamic Walking 2012, Pensacola, 2012 (inproceedings)

am

[BibTex]

[BibTex]


Thumb xl battery
Autonomous battery management for mobile robots based on risk and gain assessment

Berenz, V., Tanaka, F., Suzuki, K.

Artif. Intell. Rev., 37(3):217-237, 2012 (article)

am

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Data-Driven Method for Determining Natural Human-Robot Motion Mappings in Teleoperation

Pierce, R. M., Kuchenbecker, K. J.

In Proc. IEEE International Conference on Biomedical Robotics and Biomechatronics, pages: 169-176, Rome, Italy, 2012, Poster presentation given by Pierce (inproceedings)

hi

[BibTex]

[BibTex]


no image
Encoding of Periodic and their Transient Motions by a Single Dynamic Movement Primitive

Ernesti, J., Righetti, L., Do, M., Asfour, T., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 57-64, IEEE, Osaka, Japan, November 2012 (inproceedings)

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Force Control Policies for Compliant Robotic Manipulation

Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.

In ICML’12 Proceedings of the 29th International Coference on International Conference on Machine Learning, pages: 49-50, Edinburgh, Scotland, 2012 (inproceedings)

am mg

[BibTex]

[BibTex]


no image
Low Bitrate Source-filter Model Based Compression of Vibrotactile Texture Signals in Haptic Teleoperation

Chaudhari, R., Çizmeci, B., Kuchenbecker, K. J., Choi, S., Steinbach, E.

In Proc. ACM Multimedia, pages: 409-418, Nara, Japan, 2012, Oral presentation given by {Chaudhari} (inproceedings)

hi

[BibTex]

[BibTex]


no image
Robotic Learning of Haptic Adjectives Through Physical Interaction

McMahon, I., Chu, V., Riano, L., McDonald, C. G., He, Q. (., Perez-Tejada, J. M., Arrigo, M., Fitter, N., Nappo, J., Darrell, T., Kuchenbecker, K. J.

In Proc. IROS Workshop on Advances in Tactile Sensing and Touch-based Human-robot Interaction, Vilamoura, Algarve, Portugal, 2012, Oral presentation given by McMahon (inproceedings)

hi

[BibTex]

[BibTex]


no image
Quadratic programming for inverse dynamics with optimal distribution of contact forces

Righetti, L., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 538-543, IEEE, Osaka, Japan, November 2012 (inproceedings)

Abstract
In this contribution we propose an inverse dynamics controller for a humanoid robot that exploits torque redundancy to minimize any combination of linear and quadratic costs in the contact forces and the commands. In addition the controller satisfies linear equality and inequality constraints in the contact forces and the commands such as torque limits, unilateral contacts or friction cones limits. The originality of our approach resides in the formulation of the problem as a quadratic program where we only need to solve for the control commands and where the contact forces are optimized implicitly. Furthermore, we do not need a structured representation of the dynamics of the robot (i.e. an explicit computation of the inertia matrix). It is in contrast with existing methods based on quadratic programs. The controller is then robust to uncertainty in the estimation of the dynamics model and the optimization is fast enough to be implemented in high bandwidth torque control loops that are increasingly available on humanoid platforms. We demonstrate properties of our controller with simulations of a human size humanoid robot.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Model-free reinforcement learning of impedance control in stochastic environments

Stulp, Freek, Buchli, Jonas, Ellmer, Alice, Mistry, Michael, Theodorou, Evangelos A., Schaal, S.

Autonomous Mental Development, IEEE Transactions on, 4(4):330-341, 2012 (article)

am

[BibTex]

[BibTex]


no image
Towards Associative Skill Memories

Pastor, P., Kalakrishnan, M., Righetti, L., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 309-315, IEEE, Osaka, Japan, November 2012 (inproceedings)

Abstract
Movement primitives as basis of movement planning and control have become a popular topic in recent years. The key idea of movement primitives is that a rather small set of stereotypical movements should suffice to create a large set of complex manipulation skills. An interesting side effect of stereotypical movement is that it also creates stereotypical sensory events, e.g., in terms of kinesthetic variables, haptic variables, or, if processed appropriately, visual variables. Thus, a movement primitive executed towards a particular object in the environment will associate a large number of sensory variables that are typical for this manipulation skill. These association can be used to increase robustness towards perturbations, and they also allow failure detection and switching towards other behaviors. We call such movement primitives augmented with sensory associations Associative Skill Memories (ASM). This paper addresses how ASMs can be acquired by imitation learning and how they can create robust manipulation skill by determining subsequent ASMs online to achieve a particular manipulation goal. Evaluation for grasping and manipulation with a Barrett WAM/Hand illustrate our approach.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Template-based learning of grasp selection

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Asfour, T., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 2379-2384, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
The ability to grasp unknown objects is an important skill for personal robots, which has been addressed by many present and past research projects, but still remains an open problem. A crucial aspect of grasping is choosing an appropriate grasp configuration, i.e. the 6d pose of the hand relative to the object and its finger configuration. Finding feasible grasp configurations for novel objects, however, is challenging because of the huge variety in shape and size of these objects. Moreover, possible configurations also depend on the specific kinematics of the robotic arm and hand in use. In this paper, we introduce a new grasp selection algorithm able to find object grasp poses based on previously demonstrated grasps. Assuming that objects with similar shapes can be grasped in a similar way, we associate to each demonstrated grasp a grasp template. The template is a local shape descriptor for a possible grasp pose and is constructed using 3d information from depth sensors. For each new object to grasp, the algorithm then finds the best grasp candidate in the library of templates. The grasp selection is also able to improve over time using the information of previous grasp attempts to adapt the ranking of the templates. We tested the algorithm on two different platforms, the Willow Garage PR2 and the Barrett WAM arm which have very different hands. Our results show that the algorithm is able to find good grasp configurations for a large set of objects from a relatively small set of demonstrations, and does indeed improve its performance over time.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation

Stulp, F., Theodorou, E., Schaal, S.

IEEE Transactions on Robotics, 2012 (article)

am

[BibTex]

[BibTex]


no image
Construct Validity of Instrument Vibrations as a Measure of Robotic Surgical Skill

Gomez, E. D., Bark, K., Rivera, C., McMahan, W., Remington, A., Lee, D. I., Williams, N., Murayama, K., Dumon, K., Kuchenbecker, K. J.

Journal of the American College of Surgeons, 215(3):S119-120, Chicago, Illinois, USA, 2012, Oral presentation given by Gomez at the {\em American College of Surgeons (ACS) Clinical Congress} (article)

hi

[BibTex]

[BibTex]


no image
Probabilistic depth image registration incorporating nonvisual information

Wüthrich, M., Pastor, P., Righetti, L., Billard, A., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 3637-3644, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
In this paper, we derive a probabilistic registration algorithm for object modeling and tracking. In many robotics applications, such as manipulation tasks, nonvisual information about the movement of the object is available, which we will combine with the visual information. Furthermore we do not only consider observations of the object, but we also take space into account which has been observed to not be part of the object. Furthermore we are computing a posterior distribution over the relative alignment and not a point estimate as typically done in for example Iterative Closest Point (ICP). To our knowledge no existing algorithm meets these three conditions and we thus derive a novel registration algorithm in a Bayesian framework. Experimental results suggest that the proposed methods perform favorably in comparison to PCL [1] implementations of feature mapping and ICP, especially if nonvisual information is available.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl teaser 1
Accurate Vision-based Manipulation through Contact Reasoning

Kloss, A., Bauza, M., Wu, J., Tenenbaum, J. B., Rodriguez, A., Bohg, J.

In International Conference on Robotics and Automation, May (inproceedings) Submitted

Abstract
Planning contact interactions is one of the core challenges of many robotic tasks. Optimizing contact locations while taking dynamics into account is computationally costly and in only partially observed environments, executing contact-based tasks often suffers from low accuracy. We present an approach that addresses these two challenges for the problem of vision-based manipulation. First, we propose to disentangle contact from motion optimization. Thereby, we improve planning efficiency by focusing computation on promising contact locations. Second, we use a hybrid approach for perception and state estimation that combines neural networks with a physically meaningful state representation. In simulation and real-world experiments on the task of planar pushing, we show that our method is more efficient and achieves a higher manipulation accuracy than previous vision-based approaches.

am

[BibTex]


[BibTex]