Header logo is


2018


A Value-Driven Eldercare Robot: Virtual and Physical Instantiations of a Case-Supported Principle-Based Behavior Paradigm
A Value-Driven Eldercare Robot: Virtual and Physical Instantiations of a Case-Supported Principle-Based Behavior Paradigm

Anderson, M., Anderson, S., Berenz, V.

Proceedings of the IEEE, pages: 1,15, October 2018 (article)

Abstract
In this paper, a case-supported principle-based behavior paradigm is proposed to help ensure ethical behavior of autonomous machines. We argue that ethically significant behavior of autonomous systems should be guided by explicit ethical principles determined through a consensus of ethicists. Such a consensus is likely to emerge in many areas in which autonomous systems are apt to be deployed and for the actions they are liable to undertake. We believe that this is the case since we are more likely to agree on how machines ought to treat us than on how human beings ought to treat one another. Given such a consensus, particular cases of ethical dilemmas where ethicists agree on the ethically relevant features and the right course of action can be used to help discover principles that balance these features when they are in conflict. Such principles not only help ensure ethical behavior of complex and dynamic systems but also can serve as a basis for justification of this behavior. The requirements, methods, implementation, and evaluation components of the paradigm are detailed as well as its instantiation in both a simulated and real robot functioning in the domain of eldercare.

am

link (url) DOI [BibTex]

2018



Softness, Warmth, and Responsiveness Improve Robot Hugs
Softness, Warmth, and Responsiveness Improve Robot Hugs

Block, A. E., Kuchenbecker, K. J.

International Journal of Social Robotics, 11(1):49-64, October 2018 (article)

Abstract
Hugs are one of the first forms of contact and affection humans experience. Due to their prevalence and health benefits, roboticists are naturally interested in having robots one day hug humans as seamlessly as humans hug other humans. This project's purpose is to evaluate human responses to different robot physical characteristics and hugging behaviors. Specifically, we aim to test the hypothesis that a soft, warm, touch-sensitive PR2 humanoid robot can provide humans with satisfying hugs by matching both their hugging pressure and their hugging duration. Thirty relatively young and rather technical participants experienced and evaluated twelve hugs with the robot, divided into three randomly ordered trials that focused on physical robot characteristics (single factor, three levels) and nine randomly ordered trials with low, medium, and high hug pressure and duration (two factors, three levels each). Analysis of the results showed that people significantly prefer soft, warm hugs over hard, cold hugs. Furthermore, users prefer hugs that physically squeeze them and release immediately when they are ready for the hug to end. Taking part in the experiment also significantly increased positive user opinions of robots and robot use.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Playful: Reactive Programming for Orchestrating Robotic Behavior
Playful: Reactive Programming for Orchestrating Robotic Behavior

Berenz, V., Schaal, S.

IEEE Robotics Automation Magazine, 25(3):49-60, September 2018 (article) In press

Abstract
For many service robots, reactivity to changes in their surroundings is a must. However, developing software suitable for dynamic environments is difficult. Existing robotic middleware allows engineers to design behavior graphs by organizing communication between components. But because these graphs are structurally inflexible, they hardly support the development of complex reactive behavior. To address this limitation, we propose Playful, a software platform that applies reactive programming to the specification of robotic behavior.

am

playful website playful_IEEE_RAM link (url) DOI [BibTex]


ClusterNet: Instance Segmentation in RGB-D Images
ClusterNet: Instance Segmentation in RGB-D Images

Shao, L., Tian, Y., Bohg, J.

arXiv, September 2018, Submitted to ICRA'19 (article) Submitted

Abstract
We propose a method for instance-level segmentation that uses RGB-D data as input and provides detailed information about the location, geometry and number of {\em individual\/} objects in the scene. This level of understanding is fundamental for autonomous robots. It enables safe and robust decision-making under the large uncertainty of the real-world. In our model, we propose to use the first and second order moments of the object occupancy function to represent an object instance. We train an hourglass Deep Neural Network (DNN) where each pixel in the output votes for the 3D position of the corresponding object center and for the object's size and pose. The final instance segmentation is achieved through clustering in the space of moments. The object-centric training loss is defined on the output of the clustering. Our method outperforms the state-of-the-art instance segmentation method on our synthesized dataset. We show that our method generalizes well on real-world data achieving visually better segmentation results.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Task-Driven PCA-Based Design Optimization of Wearable Cutaneous Devices

Pacchierotti, C., Young, E. M., Kuchenbecker, K. J.

IEEE Robotics and Automation Letters, 3(3):2214-2221, July 2018, Presented at ICRA 2018 (article)

Abstract
Small size and low weight are critical requirements for wearable and portable haptic interfaces, making it essential to work toward the optimization of their sensing and actuation systems. This paper presents a new approach for task-driven design optimization of fingertip cutaneous haptic devices. Given one (or more) target tactile interactions to render and a cutaneous device to optimize, we evaluate the minimum number and best configuration of the device’s actuators to minimize the estimated haptic rendering error. First, we calculate the motion needed for the original cutaneous device to render the considered target interaction. Then, we run a principal component analysis (PCA) to search for possible couplings between the original motor inputs, looking also for the best way to reconfigure them. If some couplings exist, we can re-design our cutaneous device with fewer motors, optimally configured to render the target tactile sensation. The proposed approach is quite general and can be applied to different tactile sensors and cutaneous devices. We validated it using a BioTac tactile sensor and custom plate-based 3-DoF and 6-DoF fingertip cutaneous devices, considering six representative target tactile interactions. The algorithm was able to find couplings between each device’s motor inputs, proving it to be a viable approach to optimize the design of wearable and portable cutaneous devices. Finally, we present two examples of optimized designs for our 3-DoF fingertip cutaneous device.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn {IMU}s
Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn IMUs

Fitter, N. T., Kuchenbecker, K. J.

Frontiers in Robotics and Artificial Intelligence, 5(85), July 2018 (article)

Abstract
Colleagues often shake hands in greeting, friends connect through high fives, and children around the world rejoice in hand-clapping games. As robots become more common in everyday human life, they will have the opportunity to join in these social-physical interactions, but few current robots are intended to touch people in friendly ways. This article describes how we enabled a Baxter Research Robot to both teach and learn bimanual hand-clapping games with a human partner. Our system monitors the user's motions via a pair of inertial measurement units (IMUs) worn on the wrists. We recorded a labeled library of 10 common hand-clapping movements from 10 participants; this dataset was used to train an SVM classifier to automatically identify hand-clapping motions from previously unseen participants with a test-set classification accuracy of 97.0%. Baxter uses these sensors and this classifier to quickly identify the motions of its human gameplay partner, so that it can join in hand-clapping games. This system was evaluated by N = 24 naïve users in an experiment that involved learning sequences of eight motions from Baxter, teaching Baxter eight-motion game patterns, and completing a free interaction period. The motion classification accuracy in this less structured setting was 85.9%, primarily due to unexpected variations in motion timing. The quantitative task performance results and qualitative participant survey responses showed that learning games from Baxter was significantly easier than teaching games to Baxter, and that the teaching role caused users to consider more teamwork aspects of the gameplay. Over the course of the experiment, people felt more understood by Baxter and became more willing to follow the example of the robot. Users felt uniformly safe interacting with Baxter, and they expressed positive opinions of Baxter and reported fun interacting with the robot. Taken together, the results indicate that this robot achieved credible social-physical interaction with humans and that its ability to both lead and follow systematically changed the human partner's experience.

hi

DOI [BibTex]

DOI [BibTex]


Real-time Perception meets Reactive Motion Generation
Real-time Perception meets Reactive Motion Generation

(Best Systems Paper Finalists - Amazon Robotics Best Paper Awards in Manipulation)

Kappler, D., Meier, F., Issac, J., Mainprice, J., Garcia Cifuentes, C., Wüthrich, M., Berenz, V., Schaal, S., Ratliff, N., Bohg, J.

IEEE Robotics and Automation Letters, 3(3):1864-1871, July 2018 (article)

Abstract
We address the challenging problem of robotic grasping and manipulation in the presence of uncertainty. This uncertainty is due to noisy sensing, inaccurate models and hard-to-predict environment dynamics. Our approach emphasizes the importance of continuous, real-time perception and its tight integration with reactive motion generation methods. We present a fully integrated system where real-time object and robot tracking as well as ambient world modeling provides the necessary input to feedback controllers and continuous motion optimizers. Specifically, they provide attractive and repulsive potentials based on which the controllers and motion optimizer can online compute movement policies at different time intervals. We extensively evaluate the proposed system on a real robotic platform in four scenarios that exhibit either challenging workspace geometry or a dynamic environment. We compare the proposed integrated system with a more traditional sense-plan-act approach that is still widely used. In 333 experiments, we show the robustness and accuracy of the proposed system.

am

arxiv video video link (url) DOI Project Page [BibTex]


Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs
Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs

Sproewitz, A., Tuleu, A., Ajallooeian, M., Vespignani, M., Moeckel, R., Eckert, P., D’Haene, M., Degrave, J., Nordmann, A., Schrauwen, B., Steil, J., Ijspeert, A. J.

Frontiers in Robotics and AI, 5(67), June 2018, arXiv: 1803.06259 (article)

Abstract
We present Oncilla robot, a novel mobile, quadruped legged locomotion machine. This large-cat sized, 5.1 robot is one of a kind of a recent, bioinspired legged robot class designed with the capability of model-free locomotion control. Animal legged locomotion in rough terrain is clearly shaped by sensor feedback systems. Results with Oncilla robot show that agile and versatile locomotion is possible without sensory signals to some extend, and tracking becomes robust when feedback control is added (Ajaoolleian 2015). By incorporating mechanical and control blueprints inspired from animals, and by observing the resulting robot locomotion characteristics, we aim to understand the contribution of individual components. Legged robots have a wide mechanical and control design parameter space, and a unique potential as research tools to investigate principles of biomechanics and legged locomotion control. But the hardware and controller design can be a steep initial hurdle for academic research. To facilitate the easy start and development of legged robots, Oncilla-robot's blueprints are available through open-source. [...]

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Nonlinear decoding of a complex movie from the mammalian retina

Botella-Soler, V., Deny, S., Martius, G., Marre, O., Tkačik, G.

PLOS Computational Biology, 14(5):1-27, Public Library of Science, May 2018 (article)

Abstract
Author summary Neurons in the retina transform patterns of incoming light into sequences of neural spikes. We recorded from ∼100 neurons in the rat retina while it was stimulated with a complex movie. Using machine learning regression methods, we fit decoders to reconstruct the movie shown from the retinal output. We demonstrated that retinal code can only be read out with a low error if decoders make use of correlations between successive spikes emitted by individual neurons. These correlations can be used to ignore spontaneous spiking that would, otherwise, cause even the best linear decoders to “hallucinate” nonexistent stimuli. This work represents the first high resolution single-trial full movie reconstruction and suggests a new paradigm for separating spontaneous from stimulus-driven neural activity.

al

DOI [BibTex]

DOI [BibTex]


no image
Automatically Rating Trainee Skill at a Pediatric Laparoscopic Suturing Task

Oquendo, Y. A., Riddle, E. W., Hiller, D., Blinman, T. A., Kuchenbecker, K. J.

Surgical Endoscopy, 32(4):1840-1857, April 2018 (article)

hi

DOI [BibTex]

DOI [BibTex]


no image
Distributed Event-Based State Estimation for Networked Systems: An LMI Approach

Muehlebach, M., Trimpe, S.

IEEE Transactions on Automatic Control, 63(1):269-276, January 2018 (article)

am ics

arXiv (extended version) DOI Project Page [BibTex]

arXiv (extended version) DOI Project Page [BibTex]


no image
Active microrheology in corrugated channels

Puertas, A. M., Malgaretti, P., Pagonabarraga, I.

The Journal of Chemical Physics, 149(17), American Institute of Physics, Woodbury, N.Y., 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
First-passage dynamics of linear stochastic interface models: weak-noise theory and influence of boundary conditions

Gross, M.

Journal of Statistical Mechanics: Theory and Experiment, 2018, Institute of Physics Publishing, Bristol, England, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Cu@TiO2 Janus microswimmers with a versatile motion mechanism

Wang, L. L., Popescu, M. N., Stavale, F., Ali, A., Gemming, T., Simmchen, J.

Soft Matter, 14(34):6969-6973, Royal Society of Chemistry, Cambridge, UK, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Probing interface localization-delocalization transitions by colloids

Kondrat, S., Vasilyev, O., Dietrich, S.

Journal of Physics: Condensed Matter, 30(41), IOP Publishing, Bristol, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Medical imaging for the tracking of micromotors

Vilela, D., Coss\’\io, U., Parmar, J., Mart\’\inez-Villacorta, A. M., Gómez-Vallejo, V., Llop, J., Sánchez, S.

ACS Nano, 12(2):1220-1227, American Chemical Society, Washington, DC, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Noncontinuous Super-Diffusive Dynamics of a Light-Activated Nanobottle Motor

Xuan, M., Mestre, R., Gao, C., Zhou, C., He, Q., Sánchez, S.

Angewandte Chemie International Edition, 57(23):6838-6842, Wiley-VCH, Weinheim, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
On the origin of forward-backward multiplicity correlations in pp collisions at ultrarelativistic energies

Bravina, L., Bleibel, J., Zabrodin, E.

Physics Letters B, 787, pages: 146-152, North-Holland, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Autophoretic motion in three dimensions

Lisicki, M., Reigh, S., Lauga, E.

Soft Matter, 14(17):3304-3314, Royal Society of Chemistry, Cambridge, UK, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Order-disorder transitions in lattice gases with annealed reactive constraints

Dudka, M., Bénichou, O., Oshanin, G.

Journal of Statistical Mechanics: Theory and Experiment, 2018, Institute of Physics Publishing, Bristol, England, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Bacterial Biohybrid Microswimmers

Bastos-Arrieta, J., Revilla-Guarinos, A., Uspal, W., Simmchen, J.

Frontiers in Robotics and AI, 5, Frontiers Media, Lausanne, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Fluctuational electrodynamics for nonlinear materials in and out of thermal equilibrium

Soo, H., Krüger, M.

Physical Review B, 97(4), American Physical Society, Woodbury, NY, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Local pressure for confined systems

Malgaretti, P., Bier, M.

Physical Review E, 97(2), American Physical Society, Melville, NY, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Immersive Low-Cost Virtual Reality Treatment for Phantom Limb Pain: Evidence from Two Cases

Ambron, E., Miller, A., Kuchenbecker, K. J., Buxbaum, L. J., Coslett, H. B.

Frontiers in Neurology, 9(67):1-7, 2018 (article)

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Charge polarization, local electroneutrality breakdown and eddy formation due to electroosmosis in varying-section channels

Chinappi, M., Malgaretti, P.

Soft Matter, 14(45):9083-9087, Royal Society of Chemistry, Cambridge, UK, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Critical Casimir interactions and percolation: The quantitative description of critical fluctuations

Vasilyev, O.

Physical Review E, 98(6), American Physical Society, Melville, NY, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Shear-density coupling for a compressible single-component yield-stress fluid

Gross, M., Varnik, F.

Soft Matter, 14(22):4577-4590, Royal Society of Chemistry, Cambridge, UK, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Shape-dependent guidance of active Janus particles by chemically patterned surfaces

Uspal, W. E., Popescu, M. N., Tasinkevych, M., Dietrich, S.

New Journal of Physics, 20, IOP Publishing, Bristol, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Extrapolation to nonequilibrium from coarse-grained response theory

Basu, U., Helden, L., Krüger, M.

Physical Review Letters, 120(18), American Physical Society, Woodbury, N.Y., 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Directed Flow of Micromotors through Alignment Interactions with Micropatterned Ratchets

Katuri, J., Caballero, D., Voituriez, R., Samitier, J., Sánchez, S.

ACS Nano, 12(7):7282-7291, American Chemical Society, Washington, DC, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Spontaneous symmetry breaking of charge-regulated surfaces

Majee, A., Bier, M., Podgornik, R.

Soft Matter, 14(6):985-991, Royal Society of Chemistry, Cambridge, UK, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Electrostatic interaction between dissimilar colloids at fluid interfaces

Majee, A., Schmetzer, T., Bier, M.

Physical Review E, 97(4), American Physical Society, Melville, NY, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Wetting transition of a cylindrical cavity engraved on a hydrophobic surface

Kim, H., Ha, M. Y., Jang, J.

The Journal of Physical Chemistry C, 122(4):2122-2126, American Chemical Society, Washington, D.C., 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Curvature corrections to the nonlocal interfacial model for short-ranged forces

Romero-Enrique, J.M., Squarcini, Alessio, Parry, A. O., Goldbart, P. M.

Physical Review E, 97(6), American Physical Society, Melville, NY, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Effective squirmer models for self-phoretic chemically active spherical colloids

Popescu, M. N., Uspal, W. E., Eskandari, Z., Tasinkevych, M., Dietrich, S.

The European Physical Journal E, 41(12), EDP Sciences; Società Italiana di Fisica; Springer, Les Ulis; Bologna; Heidelberg, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Two time scales for self and collective diffusion near the critical point in a simple patchy model for proteins with floating bonds

Bleibel, J., Habiger, M., Lütje, M., Hirschmann, F., Roosen-Runge, F., Seydel, T., Zhang, F., Schreiber, F., Oettel, M.

Soft Matter, 14(39):8006-8016, Royal Society of Chemistry, Cambridge, UK, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Globulelike Conformation and Enhanced Diffusion of Active Polymers

Bianco, V., Locatelli, E., Malgaretti, P.

Physical Review Letters, 121(21), American Physical Society, Woodbury, N.Y., 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Rheological behavior of colloidal suspension with long-range interactions

Arietaleaniz, S., Malgaretti, P., Pagonabarraga, I., Hidalgo, R. C.

Physical Review E, 98(4), American Physical Society, Melville, NY, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Solvent coarsening around colloids driven by temperature gradients

Roy, S., Dietrich, S., Maciolek, A.

Physical Review E, 97(4), American Physical Society, Melville, NY, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Cross-stream migration of active particles

Katuri, J., Uspal, W., Simmchen, J., López, A. M., Sanchez, S.

Science Advances, 4(1), AAAS, Washington, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Transient dynamics of electric double-layer capacitors: Exact expressions within the Debye-Falkenhagen approximation

Janssen, M., Bier, M.

Physical Review E, 97(5), American Physical Society, Melville, NY, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Coalescence preference and droplet size inequality during fluid phase segregation

Roy, S.

EPL, 121(3), EDP Science, Les-Ulis, 2018 (article)

icm

DOI [BibTex]


no image
Structure of interfaces at phase coexistence. Theory and numerics

Delfino, G., Selke, W., Squarcini, A.

Journal of Statistical Mechanics: Theory and Experiment, 2018, Institute of Physics Publishing, Bristol, England, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Power spectral density of a single Brownian trajectory: what one can and cannot learn from it

Krapf, D., Marinari, E., Metzler, Ralf, Oshanin, Gleb, Xu, Xinran, Squarcini, A.

New Journal of Physics, 20, IOP Publishing, Bristol, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Diffusiophoretically induced interactions between chemically active and inert particles

Reigh, Shang-Yik, Chuphal, P., Thakur, S., Kapral, R.

Soft Matter, 14(29):6043-6057, Royal Society of Chemistry, Cambridge, UK, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Collective behavior of colloids due to critical Casimir interactions

Maciolek, A., Dietrich, S.

Reviews of Modern Physics, 90(4), American Physical Society, Minneapolis, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Heat radiation and transfer in confinement

Asheichyk, K., Krüger, M.

Physical Review B, 98(19), American Physical Society, Woodbury, NY, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
A ferronematic slab in external magnetic fields

Zarubin, G., Bier, M., Dietrich, S.

Soft Matter, 14(48):9806-9818, Royal Society of Chemistry, Cambridge, UK, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Surface-induced nonequilibrium dynamics and critical Casimir forces for model B in film geometry

Gross, M., Gambassi, A., Dietrich, S.

Physical Review E, 98(3), American Physical Society, Melville, NY, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]


no image
Phase separation around a heated colloid in bulk and under confinement

Roy, S., Maciolek, A.

Soft Matter, 14(46):9326-9335, Royal Society of Chemistry, Cambridge, UK, 2018 (article)

icm

DOI [BibTex]

DOI [BibTex]