Header logo is


2015


no image
Novel plasticity rule can explain the development of sensorimotor intelligence

Der, R., Martius, G.

Proceedings of the National Academy of Sciences, 112(45):E6224-E6232, 2015 (article)

Abstract
Grounding autonomous behavior in the nervous system is a fundamental challenge for neuroscience. In particular, self-organized behavioral development provides more questions than answers. Are there special functional units for curiosity, motivation, and creativity? This paper argues that these features can be grounded in synaptic plasticity itself, without requiring any higher-level constructs. We propose differential extrinsic plasticity (DEP) as a new synaptic rule for self-learning systems and apply it to a number of complex robotic systems as a test case. Without specifying any purpose or goal, seemingly purposeful and adaptive rhythmic behavior is developed, displaying a certain level of sensorimotor intelligence. These surprising results require no system-specific modifications of the DEP rule. They rather arise from the underlying mechanism of spontaneous symmetry breaking, which is due to the tight brain body environment coupling. The new synaptic rule is biologically plausible and would be an interesting target for neurobiological investigation. We also argue that this neuronal mechanism may have been a catalyst in natural evolution.

al

link (url) DOI Project Page [BibTex]

2015


link (url) DOI Project Page [BibTex]


no image
Quantifying Emergent Behavior of Autonomous Robots

Martius, G., Olbrich, E.

Entropy, 17(10):7266, 2015 (article)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2006


no image
Let It Roll – Emerging Sensorimotor Coordination in a Spherical Robot

Der, R., Martius, G., Hesse, F.

In Proc, Artificial Life X, pages: 192-198, Intl. Society for Artificial Life, MIT Press, August 2006 (inproceedings)

al

[BibTex]

2006


[BibTex]


no image
From Motor Babbling to Purposive Actions: Emerging Self-exploration in a Dynamical Systems Approach to Early Robot Development

Der, R., Martius, G.

In Proc. From Animals to Animats 9, SAB 2006, 4095, pages: 406-421, LNCS, Springer, 2006 (inproceedings)

Abstract
Self-organization and the phenomenon of emergence play an essential role in living systems and form a challenge to artificial life systems. This is not only because systems become more lifelike, but also since self-organization may help in reducing the design efforts in creating complex behavior systems. The present paper studies self-exploration based on a general approach to the self-organization of behavior, which has been developed and tested in various examples in recent years. This is a step towards autonomous early robot development. We consider agents under the close sensorimotor coupling paradigm with a certain cognitive ability realized by an internal forward model. Starting from tabula rasa initial conditions we overcome the bootstrapping problem and show emerging self-exploration. Apart from that, we analyze the effect of limited actions, which lead to deprivation of the world model. We show that our paradigm explicitly avoids this by producing purposive actions in a natural way. Examples are given using a simulated simple wheeled robot and a spherical robot driven by shifting internal masses.

al

[BibTex]

[BibTex]


no image
Rocking Stamper and Jumping Snake from a Dynamical System Approach to Artificial Life

Der, R., Hesse, F., Martius, G.

Adaptive Behavior, 14(2):105-115, 2006 (article)

Abstract
Dynamical systems offer intriguing possibilities as a substrate for the generation of behavior because of their rich behavioral complexity. However this complexity together with the largely covert relation between the parameters and the behavior of the agent is also the main hindrance in the goal-oriented design of a behavior system. This paper presents a general approach to the self-regulation of dynamical systems so that the design problem is circumvented. We consider the controller (a neural net work) as the mediator for changes in the sensor values over time and define a dynamics for the parameters of the controller by maximizing the dynamical complexity of the sensorimotor loop under the condition that the consequences of the actions taken are still predictable. This very general principle is given a concrete mathematical formulation and is implemented in an extremely robust and versatile algorithm for the parameter dynamics of the controller. We consider two different applications, a mechanical device called the rocking stamper and the ODE simulations of a "snake" with five degrees of freedom. In these and many other examples studied we observed various behavior modes of high dynamical complexity.

al

DOI [BibTex]

DOI [BibTex]