Header logo is


2018


Deep Reinforcement Learning for Event-Triggered Control
Deep Reinforcement Learning for Event-Triggered Control

Baumann, D., Zhu, J., Martius, G., Trimpe, S.

In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 943-950, 57th IEEE International Conference on Decision and Control (CDC), December 2018 (inproceedings)

al ics

arXiv PDF DOI Project Page Project Page [BibTex]

2018


arXiv PDF DOI Project Page Project Page [BibTex]


Motion-based Object Segmentation based on Dense RGB-D Scene Flow
Motion-based Object Segmentation based on Dense RGB-D Scene Flow

Shao, L., Shah, P., Dwaracherla, V., Bohg, J.

IEEE Robotics and Automation Letters, 3(4):3797-3804, IEEE, IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2018 (conference)

Abstract
Given two consecutive RGB-D images, we propose a model that estimates a dense 3D motion field, also known as scene flow. We take advantage of the fact that in robot manipulation scenarios, scenes often consist of a set of rigidly moving objects. Our model jointly estimates (i) the segmentation of the scene into an unknown but finite number of objects, (ii) the motion trajectories of these objects and (iii) the object scene flow. We employ an hourglass, deep neural network architecture. In the encoding stage, the RGB and depth images undergo spatial compression and correlation. In the decoding stage, the model outputs three images containing a per-pixel estimate of the corresponding object center as well as object translation and rotation. This forms the basis for inferring the object segmentation and final object scene flow. To evaluate our model, we generated a new and challenging, large-scale, synthetic dataset that is specifically targeted at robotic manipulation: It contains a large number of scenes with a very diverse set of simultaneously moving 3D objects and is recorded with a commonly-used RGB-D camera. In quantitative experiments, we show that we significantly outperform state-of-the-art scene flow and motion-segmentation methods. In qualitative experiments, we show how our learned model transfers to challenging real-world scenes, visually generating significantly better results than existing methods.

am

Project Page arXiv DOI [BibTex]

Project Page arXiv DOI [BibTex]


A Value-Driven Eldercare Robot: Virtual and Physical Instantiations of a Case-Supported Principle-Based Behavior Paradigm
A Value-Driven Eldercare Robot: Virtual and Physical Instantiations of a Case-Supported Principle-Based Behavior Paradigm

Anderson, M., Anderson, S., Berenz, V.

Proceedings of the IEEE, pages: 1,15, October 2018 (article)

Abstract
In this paper, a case-supported principle-based behavior paradigm is proposed to help ensure ethical behavior of autonomous machines. We argue that ethically significant behavior of autonomous systems should be guided by explicit ethical principles determined through a consensus of ethicists. Such a consensus is likely to emerge in many areas in which autonomous systems are apt to be deployed and for the actions they are liable to undertake. We believe that this is the case since we are more likely to agree on how machines ought to treat us than on how human beings ought to treat one another. Given such a consensus, particular cases of ethical dilemmas where ethicists agree on the ethically relevant features and the right course of action can be used to help discover principles that balance these features when they are in conflict. Such principles not only help ensure ethical behavior of complex and dynamic systems but also can serve as a basis for justification of this behavior. The requirements, methods, implementation, and evaluation components of the paradigm are detailed as well as its instantiation in both a simulated and real robot functioning in the domain of eldercare.

am

link (url) DOI [BibTex]


Playful: Reactive Programming for Orchestrating Robotic Behavior
Playful: Reactive Programming for Orchestrating Robotic Behavior

Berenz, V., Schaal, S.

IEEE Robotics Automation Magazine, 25(3):49-60, September 2018 (article) In press

Abstract
For many service robots, reactivity to changes in their surroundings is a must. However, developing software suitable for dynamic environments is difficult. Existing robotic middleware allows engineers to design behavior graphs by organizing communication between components. But because these graphs are structurally inflexible, they hardly support the development of complex reactive behavior. To address this limitation, we propose Playful, a software platform that applies reactive programming to the specification of robotic behavior.

am

playful website playful_IEEE_RAM link (url) DOI [BibTex]


ClusterNet: Instance Segmentation in RGB-D Images
ClusterNet: Instance Segmentation in RGB-D Images

Shao, L., Tian, Y., Bohg, J.

arXiv, September 2018, Submitted to ICRA'19 (article) Submitted

Abstract
We propose a method for instance-level segmentation that uses RGB-D data as input and provides detailed information about the location, geometry and number of {\em individual\/} objects in the scene. This level of understanding is fundamental for autonomous robots. It enables safe and robust decision-making under the large uncertainty of the real-world. In our model, we propose to use the first and second order moments of the object occupancy function to represent an object instance. We train an hourglass Deep Neural Network (DNN) where each pixel in the output votes for the 3D position of the corresponding object center and for the object's size and pose. The final instance segmentation is achieved through clustering in the space of moments. The object-centric training loss is defined on the output of the clustering. Our method outperforms the state-of-the-art instance segmentation method on our synthesized dataset. We show that our method generalizes well on real-world data achieving visually better segmentation results.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Discovering and Teaching Optimal Planning Strategies

Lieder, F., Callaway, F., Krueger, P. M., Das, P., Griffiths, T. L., Gul, S.

In The 14th biannual conference of the German Society for Cognitive Science, GK, September 2018 (inproceedings)

re

Project Page [BibTex]

Project Page [BibTex]


no image
Discovering Rational Heuristics for Risky Choice

Gul, S., Krueger, P. M., Callaway, F., Griffiths, T. L., Lieder, F.

The 14th biannual conference of the German Society for Cognitive Science, GK, The 14th biannual conference of the German Society for Cognitive Science, GK, September 2018 (conference)

re

Project Page [BibTex]

Project Page [BibTex]


Probabilistic Recurrent State-Space Models
Probabilistic Recurrent State-Space Models

Doerr, A., Daniel, C., Schiegg, M., Nguyen-Tuong, D., Schaal, S., Toussaint, M., Trimpe, S.

In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), July 2018 (inproceedings)

Abstract
State-space models (SSMs) are a highly expressive model class for learning patterns in time series data and for system identification. Deterministic versions of SSMs (e.g., LSTMs) proved extremely successful in modeling complex time-series data. Fully probabilistic SSMs, however, unfortunately often prove hard to train, even for smaller problems. To overcome this limitation, we propose a scalable initialization and training algorithm based on doubly stochastic variational inference and Gaussian processes. In the variational approximation we propose in contrast to related approaches to fully capture the latent state temporal correlations to allow for robust training.

am ics

arXiv pdf Project Page [BibTex]

arXiv pdf Project Page [BibTex]


Real-time Perception meets Reactive Motion Generation
Real-time Perception meets Reactive Motion Generation

(Best Systems Paper Finalists - Amazon Robotics Best Paper Awards in Manipulation)

Kappler, D., Meier, F., Issac, J., Mainprice, J., Garcia Cifuentes, C., Wüthrich, M., Berenz, V., Schaal, S., Ratliff, N., Bohg, J.

IEEE Robotics and Automation Letters, 3(3):1864-1871, July 2018 (article)

Abstract
We address the challenging problem of robotic grasping and manipulation in the presence of uncertainty. This uncertainty is due to noisy sensing, inaccurate models and hard-to-predict environment dynamics. Our approach emphasizes the importance of continuous, real-time perception and its tight integration with reactive motion generation methods. We present a fully integrated system where real-time object and robot tracking as well as ambient world modeling provides the necessary input to feedback controllers and continuous motion optimizers. Specifically, they provide attractive and repulsive potentials based on which the controllers and motion optimizer can online compute movement policies at different time intervals. We extensively evaluate the proposed system on a real robotic platform in four scenarios that exhibit either challenging workspace geometry or a dynamic environment. We compare the proposed integrated system with a more traditional sense-plan-act approach that is still widely used. In 333 experiments, we show the robustness and accuracy of the proposed system.

am

arxiv video video link (url) DOI Project Page [BibTex]


Online Learning of a Memory for Learning Rates
Online Learning of a Memory for Learning Rates

(nominated for best paper award)

Meier, F., Kappler, D., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018, accepted (inproceedings)

Abstract
The promise of learning to learn for robotics rests on the hope that by extracting some information about the learning process itself we can speed up subsequent similar learning tasks. Here, we introduce a computationally efficient online meta-learning algorithm that builds and optimizes a memory model of the optimal learning rate landscape from previously observed gradient behaviors. While performing task specific optimization, this memory of learning rates predicts how to scale currently observed gradients. After applying the gradient scaling our meta-learner updates its internal memory based on the observed effect its prediction had. Our meta-learner can be combined with any gradient-based optimizer, learns on the fly and can be transferred to new optimization tasks. In our evaluations we show that our meta-learning algorithm speeds up learning of MNIST classification and a variety of learning control tasks, either in batch or online learning settings.

am

pdf video code [BibTex]

pdf video code [BibTex]


Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks
Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks

Sutanto, G., Su, Z., Schaal, S., Meier, F.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

am

pdf video [BibTex]

pdf video [BibTex]


no image
Nonlinear decoding of a complex movie from the mammalian retina

Botella-Soler, V., Deny, S., Martius, G., Marre, O., Tkačik, G.

PLOS Computational Biology, 14(5):1-27, Public Library of Science, May 2018 (article)

Abstract
Author summary Neurons in the retina transform patterns of incoming light into sequences of neural spikes. We recorded from ∼100 neurons in the rat retina while it was stimulated with a complex movie. Using machine learning regression methods, we fit decoders to reconstruct the movie shown from the retinal output. We demonstrated that retinal code can only be read out with a low error if decoders make use of correlations between successive spikes emitted by individual neurons. These correlations can be used to ignore spontaneous spiking that would, otherwise, cause even the best linear decoders to “hallucinate” nonexistent stimuli. This work represents the first high resolution single-trial full movie reconstruction and suggests a new paradigm for separating spontaneous from stimulus-driven neural activity.

al

DOI [BibTex]

DOI [BibTex]


no image
Distributed Event-Based State Estimation for Networked Systems: An LMI Approach

Muehlebach, M., Trimpe, S.

IEEE Transactions on Automatic Control, 63(1):269-276, January 2018 (article)

am ics

arXiv (extended version) DOI Project Page [BibTex]

arXiv (extended version) DOI Project Page [BibTex]


no image
Memristor-enhanced humanoid robot control system–Part I: theory behind the novel memcomputing paradigm

Ascoli, A., Baumann, D., Tetzlaff, R., Chua, L. O., Hild, M.

International Journal of Circuit Theory and Applications, 46(1):155-183, 2018 (article)

am

DOI [BibTex]

DOI [BibTex]


no image
Learning to select computations

Callaway, F., Gul, S., Krueger, P., Griffiths, T. L., Lieder, F.

In Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference, 2018 (inproceedings)

re

Project Page [BibTex]

Project Page [BibTex]


no image
Schema-related cognitive load influences performance, speech, and physiology in a dual-task setting: A continuous multi-measure approach

Wirzberger, M., Herms, R., Esmaeili Bijarsari, S., Eibl, M., Rey, G. D.

Cognitive Research: Principles and Implications, 3:46, Springer Nature, 2018 (article)

Abstract
Schema acquisition processes comprise an essential source of cognitive demands in learning situations. To shed light on related mechanisms and influencing factors, this study applied a continuous multi-measure approach for cognitive load assessment. In a dual-task setting, a sample of 123 student participants learned visually presented symbol combinations with one of two levels of complexity while memorizing auditorily presented number sequences. Learners’ cognitive load during the learning task was addressed by secondary task performance, prosodic speech parameters (pauses, articulation rate), and physiological markers (heart rate, skin conductance response). While results revealed increasing primary and secondary task performance over the trials, decreases in speech and physiological parameters indicated a reduction in the overall level of cognitive load with task progression. In addition, the robustness of the acquired schemata was confirmed by a transfer task that required participants to apply the obtained symbol combinations. Taken together, the observed pattern of evidence supports the idea of a logarithmically decreasing progression of cognitive load with increasing schema acquisition, and further hints on robust and stable transfer performance, even under enhanced transfer demands. Finally, theoretical and practical consequences consider evidence on desirable difficulties in learning as well as the potential of multimodal cognitive load detection in learning applications.

re

DOI [BibTex]

DOI [BibTex]


no image
On Time Optimization of Centroidal Momentum Dynamics

Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 5776-5782, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing † †Implementation details and demos can be found in the source code available at https://git-amd.tuebingen.mpg.de/bponton/timeoptimization.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Combining learned and analytical models for predicting action effects
Combining learned and analytical models for predicting action effects

Kloss, A., Schaal, S., Bohg, J.

arXiv, 2018 (article) Submitted

Abstract
One of the most basic skills a robot should possess is predicting the effect of physical interactions with objects in the environment. This enables optimal action selection to reach a certain goal state. Traditionally, dynamics are approximated by physics-based analytical models. These models rely on specific state representations that may be hard to obtain from raw sensory data, especially if no knowledge of the object shape is assumed. More recently, we have seen learning approaches that can predict the effect of complex physical interactions directly from sensory input. It is however an open question how far these models generalize beyond their training data. In this work, we investigate the advantages and limitations of neural network based learning approaches for predicting the effects of actions based on sensory input and show how analytical and learned models can be combined to leverage the best of both worlds. As physical interaction task, we use planar pushing, for which there exists a well-known analytical model and a large real-world dataset. We propose to use a convolutional neural network to convert raw depth images or organized point clouds into a suitable representation for the analytical model and compare this approach to using neural networks for both, perception and prediction. A systematic evaluation of the proposed approach on a very large real-world dataset shows two main advantages of the hybrid architecture. Compared to a pure neural network, it significantly (i) reduces required training data and (ii) improves generalization to novel physical interaction.

am

arXiv pdf link (url) [BibTex]


no image
L4: Practical loss-based stepsize adaptation for deep learning

Rolinek, M., Martius, G.

In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), pages: 6434-6444, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 2018 (inproceedings)

al

Github link (url) Project Page [BibTex]

Github link (url) Project Page [BibTex]


no image
Attention please! Enhanced attention control abilities compensate for instructional impairments in multimedia learning

Wirzberger, M., Rey, G. D.

Journal of Computers in Education, 5(2):243-257, Springer Nature, 2018 (article)

Abstract
Learners exposed to multimedia learning contexts have to deal with a variety of visual stimuli, demanding a conducive design of learning material to maintain limitations in attentional resources. Within the current study, effects and constraints arising from two selected impairing features are investigated in more detail within a computer-based learning task on factor analysis. A sample of 53 students received a combination of textual and pictorial elements that explained the topic, while impaired attention was systematically induced in a 2 × 2 factorial between-subjects design by interrupting system-notifications (with vs. without) and seductive text passages (with vs. without). Learners’ ability for controlled attention was assessed with a standardized psychological attention inventory. Approaching the results, learners receiving seductive text passages spent significantly more time on the learning material. In addition, a moderation effect of attention control abilities on the relationship between interruptions and retention performance resulted. Explanations for the obtained findings are discussed referring to mechanisms of compensation, load, and activation.

re

DOI [BibTex]

DOI [BibTex]


Systematic self-exploration of behaviors for robots in a dynamical systems framework
Systematic self-exploration of behaviors for robots in a dynamical systems framework

Pinneri, C., Martius, G.

In Proc. Artificial Life XI, pages: 319-326, MIT Press, Cambridge, MA, 2018 (inproceedings)

Abstract
One of the challenges of this century is to understand the neural mechanisms behind cognitive control and learning. Recent investigations propose biologically plausible synaptic mechanisms for self-organizing controllers, in the spirit of Hebbian learning. In particular, differential extrinsic plasticity (DEP) [Der and Martius, PNAS 2015], has proven to enable embodied agents to self-organize their individual sensorimotor development, and generate highly coordinated behaviors during their interaction with the environment. These behaviors are attractors of a dynamical system. In this paper, we use the DEP rule to generate attractors and we combine it with a “repelling potential” which allows the system to actively explore all its attractor behaviors in a systematic way. With a view to a self-determined exploration of goal-free behaviors, our framework enables switching between different motion patterns in an autonomous and sequential fashion. Our algorithm is able to recover all the attractor behaviors in a toy system and it is also effective in two simulated environments. A spherical robot discovers all its major rolling modes and a hexapod robot learns to locomote in 50 different ways in 30min.

al

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
The Computational Challenges of Pursuing Multiple Goals: Network Structure of Goal Systems Predicts Human Performance

Reichman, D., Lieder, F., Bourgin, D. D., Talmon, N., Griffiths, T. L.

PsyArXiv, 2018 (article)

re

DOI [BibTex]

DOI [BibTex]


no image
The moderating role of arousal on the seductive detail effect in a multimedia learning setting

Schneider, S., Wirzberger, M., Rey, G. D.

Applied Cognitive Psychology, Wiley, 2018 (article)

Abstract
Arousal has been found to increase learners' attentional resources. In contrast, seductive details (interesting but learning‐irrelevant information) are considered to distract attention away from relevant information and, thus, hinder learning. However, a possibly moderating role of arousal on the seductive detail effect has not been examined yet. In this study, arousal variations were induced via audio files of false heartbeats. In consequence, 100 participants were randomly assigned to a 2 (with or without seductive details) × 2 (lower vs. higher false heart rates) between‐subjects design. Data on learning performance, cognitive load, motivation, heartbeat frequency, and electro‐dermal activity were collected. Results show learning‐inhibiting effects for seductive details and learning‐enhancing effects for higher false heart rates. Cognitive processes mediate both effects. However, the detrimental effect of seductive details was not present when heart rate was higher. Results indicate that the seductive detail effect is moderated by a learner's state of arousal.

re

DOI [BibTex]

DOI [BibTex]


no image
Memristor-enhanced humanoid robot control system–Part II: circuit theoretic model and performance analysis

Baumann, D., Ascoli, A., Tetzlaff, R., Chua, L. O., Hild, M.

International Journal of Circuit Theory and Applications, 46(1):184-220, 2018 (article)

am

DOI [BibTex]

DOI [BibTex]


Learning equations for extrapolation and control
Learning equations for extrapolation and control

Sahoo, S. S., Lampert, C. H., Martius, G.

In Proc. 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, 2018, 80, pages: 4442-4450, http://proceedings.mlr.press/v80/sahoo18a/sahoo18a.pdf, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, 2018 (inproceedings)

Abstract
We present an approach to identify concise equations from data using a shallow neural network approach. In contrast to ordinary black-box regression, this approach allows understanding functional relations and generalizing them from observed data to unseen parts of the parameter space. We show how to extend the class of learnable equations for a recently proposed equation learning network to include divisions, and we improve the learning and model selection strategy to be useful for challenging real-world data. For systems governed by analytical expressions, our method can in many cases identify the true underlying equation and extrapolate to unseen domains. We demonstrate its effectiveness by experiments on a cart-pendulum system, where only 2 random rollouts are required to learn the forward dynamics and successfully achieve the swing-up task.

al

Code Arxiv Poster Slides link (url) Project Page [BibTex]

Code Arxiv Poster Slides link (url) Project Page [BibTex]


Robust Affordable 3D Haptic Sensation via Learning Deformation Patterns
Robust Affordable 3D Haptic Sensation via Learning Deformation Patterns

Sun, H., Martius, G.

Proceedings International Conference on Humanoid Robots, pages: 846-853, IEEE, New York, NY, USA, 2018 IEEE-RAS International Conference on Humanoid Robots, 2018, Oral Presentation (conference)

Abstract
Haptic sensation is an important modality for interacting with the real world. This paper proposes a general framework of inferring haptic forces on the surface of a 3D structure from internal deformations using a small number of physical sensors instead of employing dense sensor arrays. Using machine learning techniques, we optimize the sensor number and their placement and are able to obtain high-precision force inference for a robotic limb using as few as 9 sensors. For the optimal and sparse placement of the measurement units (strain gauges), we employ data-driven methods based on data obtained by finite element simulation. We compare data-driven approaches with model-based methods relying on geometric distance and information criteria such as Entropy and Mutual Information. We validate our approach on a modified limb of the “Poppy” robot [1] and obtain 8 mm localization precision.

al

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
CoLoSS: Cognitive load corpus with speech and performance data from a symbol-digit dual-task

Herms, R., Wirzberger, M., Eibl, M., Rey, G. D.

In Proceedings of the 11th International Language Resources and Evaluation Conference (LREC 2018), pages: 4312-4317, European Language Resource Association (ELRA), Miyazaki, Japan, 2018 (inproceedings)

re

link (url) [BibTex]

link (url) [BibTex]


no image
Rational metareasoning and the plasticity of cognitive control

Lieder, F., Shenhav, A., Musslick, S., Griffiths, T. L.

{PLoS Computational Biology}, 14(4):e1006043, Public Library of Science, 2018 (article)

re

Project Page [BibTex]

Project Page [BibTex]


no image
Beyond bounded rationality: Reverse-engineering and enhancing human intelligence

Lieder, F.

University of California, Berkeley, 2018 (phdthesis)

re

[BibTex]


no image
Influences of system response delay on elderly participants’ performance in a virtual memory training

Wirzberger, M., Schmidt, R., Georgi, M., Hardt, W., Brunnett, G., Rey, G. D.

In Annual Meeting of the Europe Chapter of the Human Factors and Ergonomics Society2018, Technology for an Aging Society, Book of Abstracts, pages: 42, Berlin, 2018 (inproceedings)

re

link (url) [BibTex]

link (url) [BibTex]


no image
Over-representation of extreme events in decision making reflects rational use of cognitive resources

Lieder, F., Griffiths, T. L., Hsu, M.

Psychological Review, 125(1):1-32, 2018 (article)

re

[BibTex]

[BibTex]


no image
Cognitive load influences performance, speech and physiological parameters in a multimodal dual-task setting

Wirzberger, M., Herms, R., Esmaeili Bijarsari, S., Rey, G. D., Eibl, M.

In Abstracts of the 60th Conference of Experimental Psychologists, pages: 296, Pabst Science Publishers, Lengerich, 2018 (inproceedings)

re

[BibTex]

[BibTex]


no image
Guidance or Setting? Exploring the learnability of computer-based instructions in a construction task

Esmaeili Bijarsari, S., Wirzberger, M., Rey, G. D.

In Abstracts of the 60th Conference of Experimental Psychologists, pages: 69, Pabst Science Publishers, Lengerich, 2018 (inproceedings)

re

[BibTex]

[BibTex]


no image
Unsupervised Contact Learning for Humanoid Estimation and Control

Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 411-417, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
This work presents a method for contact state estimation using fuzzy clustering to learn contact probability for full, six-dimensional humanoid contacts. The data required for training is solely from proprioceptive sensors - endeffector contact wrench sensors and inertial measurement units (IMUs) - and the method is completely unsupervised. The resulting cluster means are used to efficiently compute the probability of contact in each of the six endeffector degrees of freedom (DoFs) independently. This clustering-based contact probability estimator is validated in a kinematics-based base state estimator in a simulation environment with realistic added sensor noise for locomotion over rough, low-friction terrain on which the robot is subject to foot slip and rotation. The proposed base state estimator which utilizes these six DoF contact probability estimates is shown to perform considerably better than that which determines kinematic contact constraints purely based on measured normal force.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task-Specific Dynamics to Improve Whole-Body Control

Gams, A., Mason, S., Ude, A., Schaal, S., Righetti, L.

In Hua, IEEE, Beijing, China, November 2018 (inproceedings)

Abstract
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, high feedback terms can be used to improve tracking accuracy; however, this can lead to very stiff behavior or poor tracking accuracy due to limited control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. With a systematic approach we also reduce heuristic tuning of the model parameters and feedback gains, often present in real-world experiments. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
A resource-rational analysis of human planning

Callaway, F., Lieder, F., Das, P., Gul, S., Krueger, P. M., Griffiths, T. L.

In Proceedings of the 40th Annual Conference of the Cognitive Science Society, 2018 (inproceedings)

re

[BibTex]

[BibTex]


no image
Guidance or Setting? Exploring the learnability of computer-based instructions in a construction task

Esmaeili Bijarsari, S., Wirzberger, M., Rey, G. D.

In 51st Conference of the German Psychological Society. Abstracts, pages: 509, Pabst Science Publishers, Lengerich, 2018 (inproceedings)

re

[BibTex]

[BibTex]


no image
An MPC Walking Framework With External Contact Forces

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1785-1790, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
In this work, we present an extension to a linear Model Predictive Control (MPC) scheme that plans external contact forces for the robot when given multiple contact locations and their corresponding friction cone. To this end, we set up a two-step optimization problem. In the first optimization, we compute the Center of Mass (CoM) trajectory, foot step locations, and introduce slack variables to account for violating the imposed constraints on the Zero Moment Point (ZMP). We then use the slack variables to trigger the second optimization, in which we calculate the optimal external force that compensates for the ZMP tracking error. This optimization considers multiple contacts positions within the environment by formulating the problem as a Mixed Integer Quadratic Program (MIQP) that can be solved at a speed between 100-300 Hz. Once contact is created, the MIQP reduces to a single Quadratic Program (QP) that can be solved in real-time ({\textless}; 1kHz). Simulations show that the presented walking control scheme can withstand disturbances 2-3× larger with the additional force provided by a hand contact.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2011


Multi-Modal Scene Understanding for Robotic Grasping
Multi-Modal Scene Understanding for Robotic Grasping

Bohg, J.

(2011:17):vi, 194, Trita-CSC-A, KTH Royal Institute of Technology, KTH, Computer Vision and Active Perception, CVAP, Centre for Autonomous Systems, CAS, KTH, Centre for Autonomous Systems, CAS, December 2011 (phdthesis)

Abstract
Current robotics research is largely driven by the vision of creating an intelligent being that can perform dangerous, difficult or unpopular tasks. These can for example be exploring the surface of planet mars or the bottom of the ocean, maintaining a furnace or assembling a car. They can also be more mundane such as cleaning an apartment or fetching groceries. This vision has been pursued since the 1960s when the first robots were built. Some of the tasks mentioned above, especially those in industrial manufacturing, are already frequently performed by robots. Others are still completely out of reach. Especially, household robots are far away from being deployable as general purpose devices. Although advancements have been made in this research area, robots are not yet able to perform household chores robustly in unstructured and open-ended environments given unexpected events and uncertainty in perception and execution.In this thesis, we are analyzing which perceptual and motor capabilities are necessary for the robot to perform common tasks in a household scenario. In that context, an essential capability is to understand the scene that the robot has to interact with. This involves separating objects from the background but also from each other.Once this is achieved, many other tasks become much easier. Configuration of object scan be determined; they can be identified or categorized; their pose can be estimated; free and occupied space in the environment can be outlined.This kind of scene model can then inform grasp planning algorithms to finally pick up objects.However, scene understanding is not a trivial problem and even state-of-the-art methods may fail. Given an incomplete, noisy and potentially erroneously segmented scene model, the questions remain how suitable grasps can be planned and how they can be executed robustly.In this thesis, we propose to equip the robot with a set of prediction mechanisms that allow it to hypothesize about parts of the scene it has not yet observed. Additionally, the robot can also quantify how uncertain it is about this prediction allowing it to plan actions for exploring the scene at specifically uncertain places. We consider multiple modalities including monocular and stereo vision, haptic sensing and information obtained through a human-robot dialog system. We also study several scene representations of different complexity and their applicability to a grasping scenario. Given an improved scene model from this multi-modal exploration, grasps can be inferred for each object hypothesis. Dependent on whether the objects are known, familiar or unknown, different methodologies for grasp inference apply. In this thesis, we propose novel methods for each of these cases. Furthermore,we demonstrate the execution of these grasp both in a closed and open-loop manner showing the effectiveness of the proposed methods in real-world scenarios.

am

pdf [BibTex]

2011


pdf [BibTex]


Mind the gap - robotic grasping under incomplete observation
Mind the gap - robotic grasping under incomplete observation

Bohg, J., Johnson-Roberson, M., Leon, B., Felip, J., Gratal, X., Bergstrom, N., Kragic, D., Morales, A.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages: 686-693, May 2011 (inproceedings)

Abstract
We consider the problem of grasp and manipulation planning when the state of the world is only partially observable. Specifically, we address the task of picking up unknown objects from a table top. The proposed approach to object shape prediction aims at closing the knowledge gaps in the robot's understanding of the world. A completed state estimate of the environment can then be provided to a simulator in which stable grasps and collision-free movements are planned. The proposed approach is based on the observation that many objects commonly in use in a service robotic scenario possess symmetries. We search for the optimal parameters of these symmetries given visibility constraints. Once found, the point cloud is completed and a surface mesh reconstructed. Quantitative experiments show that the predictions are valid approximations of the real object shape. By demonstrating the approach on two very different robotic platforms its generality is emphasized.

am

pdf video code data DOI Project Page [BibTex]

pdf video code data DOI Project Page [BibTex]


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, Mrinal, Buchli, Jonas, Pastor, Peter, Mistry, Michael, Schaal, S.

International Journal of Robotics Research, 30(2):236-258, February 2011 (article)

am

[BibTex]

[BibTex]


no image
STOMP: Stochastic trajectory optimization for motion planning

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
We present a new approach to motion planning using a stochastic trajectory optimization framework. The approach relies on generating noisy trajectories to explore the space around an initial (possibly infeasible) trajectory, which are then combined to produced an updated trajectory with lower cost. A cost function based on a combination of obstacle and smoothness cost is optimized in each iteration. No gradient information is required for the particular optimization algorithm that we use and so general costs for which derivatives may not be available (e.g. costs corresponding to constraints and motor torques) can be included in the cost function. We demonstrate the approach both in simulation and on a dual-arm mobile manipulation system for unconstrained and constrained tasks. We experimentally show that the stochastic nature of STOMP allows it to overcome local minima that gradient-based optimizers like CHOMP can get stuck in.

am

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
An Experimental Demonstration of a Distributed and Event-based State Estimation Algorithm

(Best Interactive Paper Award (top out of 450))

Trimpe, S., D’Andrea, R.

In Proceedings of the 18th IFAC World Congress, 2011 (inproceedings)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Path Integral Control and Bounded Rationality

Braun, D. A., Ortega, P. A., Theodorou, E., Schaal, S.

In IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), 2011, clmc (inproceedings)

Abstract
Path integral methods [7], [15],[1] have recently been shown to be applicable to a very general class of optimal control problems. Here we examine the path integral formalism from a decision-theoretic point of view, since an optimal controller can always be regarded as an instance of a perfectly rational decision-maker that chooses its actions so as to maximize its expected utility [8]. The problem with perfect rationality is, however, that finding optimal actions is often very difficult due to prohibitive computational resource costs that are not taken into account. In contrast, a bounded rational decision-maker has only limited resources and therefore needs to strike some compromise between the desired utility and the required resource costs [14]. In particular, we suggest an information-theoretic measure of resource costs that can be derived axiomatically [11]. As a consequence we obtain a variational principle for choice probabilities that trades off maximizing a given utility criterion and avoiding resource costs that arise due to deviating from initially given default choice probabilities. The resulting bounded rational policies are in general probabilistic. We show that the solutions found by the path integral formalism are such bounded rational policies. Furthermore, we show that the same formalism generalizes to discrete control problems, leading to linearly solvable bounded rational control policies in the case of Markov systems. Importantly, Bellman?s optimality principle is not presupposed by this variational principle, but it can be derived as a limit case. This suggests that the information- theoretic formalization of bounded rationality might serve as a general principle in control design that unifies a number of recently reported approximate optimal control methods both in the continuous and discrete domain.

am

PDF [BibTex]

PDF [BibTex]


no image
Skill learning and task outcome prediction for manipulation

Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
Learning complex motor skills for real world tasks is a hard problem in robotic manipulation that often requires painstaking manual tuning and design by a human expert. In this work, we present a Reinforcement Learning based approach to acquiring new motor skills from demonstration. Our approach allows the robot to learn fine manipulation skills and significantly improve its success rate and skill level starting from a possibly coarse demonstration. Our approach aims to incorporate task domain knowledge, where appropriate, by working in a space consistent with the constraints of a specific task. In addition, we also present an approach to using sensor feedback to learn a predictive model of the task outcome. This allows our system to learn the proprioceptive sensor feedback needed to monitor subsequent executions of the task online and abort execution in the event of predicted failure. We illustrate our approach using two example tasks executed with the PR2 dual-arm robot: a straight and accurate pool stroke and a box flipping task using two chopsticks as tools.

am

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
An Iterative Path Integral Stochastic Optimal Control Approach for Learning Robotic Tasks

Theodorou, E., Stulp, F., Buchli, J., Schaal, S.

In Proceedings of the 18th World Congress of the International Federation of Automatic Control, 2011, clmc (inproceedings)

Abstract
Recent work on path integral stochastic optimal control theory Theodorou et al. (2010a); Theodorou (2011) has shown promising results in planning and control of nonlinear systems in high dimensional state spaces. The path integral control framework relies on the transformation of the nonlinear Hamilton Jacobi Bellman (HJB) partial differential equation (PDE) into a linear PDE and the approximation of its solution via the use of the Feynman Kac lemma. In this work, we are reviewing the generalized version of path integral stochastic optimal control formalism Theodorou et al. (2010a), used for optimal control and planing of stochastic dynamical systems with state dependent control and diffusion matrices. Moreover we present the iterative path integral control approach, the so called Policy Improvement with Path Integrals or (PI2 ) which is capable of scaling in high dimensional robotic control problems. Furthermore we present a convergence analysis of the proposed algorithm and we apply the proposed framework to a variety of robotic tasks. Finally with the goal to perform locomotion the iterative path integral control is applied for learning nonlinear limit cycle attractors with adjustable land scape.

am

PDF [BibTex]

PDF [BibTex]


Enhanced visual scene understanding through human-robot dialog
Enhanced visual scene understanding through human-robot dialog

Johnson-Roberson, M., Bohg, J., Skantze, G., Gustafson, J., Carlson, R., Rasolzadeh, B., Kragic, D.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 3342-3348, 2011 (inproceedings)

Abstract
We propose a novel human-robot-interaction framework for robust visual scene understanding. Without any a-priori knowledge about the objects, the task of the robot is to correctly enumerate how many of them are in the scene and segment them from the background. Our approach builds on top of state-of-the-art computer vision methods, generating object hypotheses through segmentation. This process is combined with a natural dialog system, thus including a `human in the loop' where, by exploiting the natural conversation of an advanced dialog system, the robot gains knowledge about ambiguous situations. We present an entropy-based system allowing the robot to detect the poorest object hypotheses and query the user for arbitration. Based on the information obtained from the human-robot dialog, the scene segmentation can be re-seeded and thereby improved. We present experimental results on real data that show an improved segmentation performance compared to segmentation without interaction.

am

pdf video DOI Project Page [BibTex]

pdf video DOI Project Page [BibTex]


Risk and gain battery management for self-docking mobile robots
Risk and gain battery management for self-docking mobile robots

Berenz, V., Suzuki, K.

In Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on, pages: 1766-1771, 2011 (inproceedings)

am

DOI [BibTex]

DOI [BibTex]


no image
Reduced Communication State Estimation for Control of an Unstable Networked Control System

Trimpe, S., D’Andrea, R.

In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, 2011 (inproceedings)

am ics

PDF Supplementary material DOI [BibTex]

PDF Supplementary material DOI [BibTex]


no image
Neuromuscular Stochastic Optimal Control of a Tendon Driven Index Finger

Theodorou, E. A., Todorov, E., Valero-Cuevas, F.

In Proceedings of American Control Conference (ACC), 2011, clmc (inproceedings)

Abstract
With the goal to build robotic hands which can reach the levels of dexterity and robustness of the hand, the question of what are the candidate control principles that can handle the nonlinearities, the high dimensionality and the internal noise of biomechanical structures of the complexity of the hand, is still open. In this work we present the first stochastic optimal feedback controller applied to a full tendon driven simulated robotic index finger. In our model we do take into account the full tendon structure of the index finger which consist of 11 tendons based on the underlying physiology and we consider muscle with the typical force - length and force velocity properties. Our feedback controller show robustness against noise and perturbation of the dynamics while it can also successfully handle the nonlinearities and high dimensionality of the robotic index finger. Furthermore as it is shown in the evaluations, it provides the complete time history of the tendon excursions and the tendon velocities of the index finger for the tasks of tapping with zero and nonzero terminal velocities.

am

PDF [BibTex]

PDF [BibTex]