al
ics
Baumann, D., Zhu, J., Martius, G., Trimpe, S.
Deep Reinforcement Learning for Event-Triggered Control
In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 943-950, 57th IEEE International Conference on Decision and Control (CDC), December 2018 (inproceedings)
ei
ics
Solowjow, F., Mehrjou, A., Schölkopf, B., Trimpe, S.
Efficient Encoding of Dynamical Systems through Local Approximations
In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 6073 - 6079 , Miami, Fl, USA, December 2018 (inproceedings)
ics
Lima, G. S., Bessa, W. M., Trimpe, S.
Depth Control of Underwater Robots using Sliding Modes and Gaussian Process Regression
In Proceeding of the 15th Latin American Robotics Symposium, João Pessoa, Brazil, 15th Latin American Robotics Symposium, November 2018 (inproceedings)
ics
pf
Rohr, A. V., Trimpe, S., Marco, A., Fischer, P., Palagi, S.
Gait learning for soft microrobots controlled by light fields
In International Conference on Intelligent Robots and Systems (IROS) 2018, pages: 6199-6206, International Conference on Intelligent Robots and Systems 2018, October 2018 (inproceedings)
pn
Tronarp, F., Kersting, H., Särkkä, S., Hennig, P.
Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective
ArXiv preprint 2018, arXiv:1810.03440 [stat.ME], October 2018 (article)
ics
Soloperto, R., Müller, M. A., Trimpe, S., Allgöwer, F.
Learning-Based Robust Model Predictive Control with State-Dependent Uncertainty
In Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (NMPC), Madison, Wisconsin, USA, 6th IFAC Conference on Nonlinear Model Predictive Control, August 2018 (inproceedings)
pn
Kajihara, T., Kanagawa, M., Yamazaki, K., Fukumizu, K.
Kernel Recursive ABC: Point Estimation with Intractable Likelihood
Proceedings of the 35th International Conference on Machine Learning, pages: 2405-2414, PMLR, July 2018 (conference)
ics
Hertneck, M., Koehler, J., Trimpe, S., Allgöwer, F.
Learning an Approximate Model Predictive Controller with Guarantees
IEEE Control Systems Letters, 2(3):543-548, July 2018 (article)
am
ics
Doerr, A., Daniel, C., Schiegg, M., Nguyen-Tuong, D., Schaal, S., Toussaint, M., Trimpe, S.
Probabilistic Recurrent State-Space Models
In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), July 2018 (inproceedings)
pn
Kersting, H., Sullivan, T. J., Hennig, P.
Convergence Rates of Gaussian ODE Filters
arXiv preprint 2018, arXiv:1807.09737 [math.NA], July 2018 (article)
ics
Solowjow, F., Baumann, D., Garcke, J., Trimpe, S.
Event-triggered Learning for Resource-efficient Networked Control
In Proceedings of the American Control Conference (ACC), pages: 6506 - 6512, American Control Conference, June 2018 (inproceedings)
al
Botella-Soler, V., Deny, S., Martius, G., Marre, O., Tkačik, G.
Nonlinear decoding of a complex movie from the mammalian retina
PLOS Computational Biology, 14(5):1-27, Public Library of Science, May 2018 (article)
ics
Mager, F., Baumann, D., Trimpe, S., Zimmerling, M.
Poster Abstract: Toward Fast Closed-loop Control over Multi-hop Low-power Wireless Networks
Proceedings of the 17th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), pages: 158-159, Porto, Portugal, April 2018 (poster)
ics
Baumann, D., Mager, F., Singh, H., Zimmerling, M., Trimpe, S.
Evaluating Low-Power Wireless Cyber-Physical Systems
In Proceedings of the IEEE Workshop on Benchmarking Cyber-Physical Networks and Systems (CPSBench), pages: 13-18, IEEE Workshop on Benchmarking Cyber-Physical Networks and Systems (CPSBench), April 2018 (inproceedings)
am
ics
Muehlebach, M., Trimpe, S.
Distributed Event-Based State Estimation for Networked Systems: An LMI Approach
IEEE Transactions on Automatic Control, 63(1):269-276, January 2018 (article)
pn
Kanagawa, M., Hennig, P., Sejdinovic, D., Sriperumbudur, B. K.
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 (article)
pn
Balles, L., Hennig, P.
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients
In Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 (inproceedings) Accepted
ei
pn
Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference
Arxiv e-prints, arXiv:1805.08845v1 [stat.ML], 2018 (article)
pn
Nishiyama, Y., Kanagawa, M., Gretton, A., Fukumizu, K.
Model-based Kernel Sum Rule: Kernel Bayesian Inference with Probabilistic Models
Arxiv e-prints, arXiv:1409.5178v2 [stat.ML], 2018 (article)
al
Rolinek, M., Martius, G.
L4: Practical loss-based stepsize adaptation for deep learning
In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), pages: 6434-6444, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 2018 (inproceedings)
pn
Schober, M., Särkkä, S., Philipp Hennig,
A probabilistic model for the numerical solution of initial value problems
Statistics and Computing, Springer US, 2018 (article)
al
Pinneri, C., Martius, G.
Systematic self-exploration of behaviors for robots in a dynamical systems framework
In Proc. Artificial Life XI, pages: 319-326, MIT Press, Cambridge, MA, 2018 (inproceedings)
pn
Wahl, N., Hennig, P., Wieser, H., Bangert, M.
Analytical incorporation of fractionation effects in probabilistic treatment planning for intensity-modulated proton therapy
Medical Physics, 2018 (article)
ei
pn
Mahsereci, M.
Probabilistic Approaches to Stochastic Optimization
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)
al
Sahoo, S. S., Lampert, C. H., Martius, G.
Learning equations for extrapolation and control
In Proc. 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, 2018, 80, pages: 4442-4450, http://proceedings.mlr.press/v80/sahoo18a/sahoo18a.pdf, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, 2018 (inproceedings)
al
Sun, H., Martius, G.
Robust Affordable 3D Haptic Sensation via Learning Deformation Patterns
Proceedings International Conference on Humanoid Robots, pages: 846-853, IEEE, New York, NY, USA, 2018 IEEE-RAS International Conference on Humanoid Robots, 2018, Oral Presentation (conference)
ei
pn
slt
Garreau, D., Jitkrittum, W., Kanagawa, M.
Large sample analysis of the median heuristic
2018 (misc) In preparation
ei
pn
Schober, M.
Probabilistic Ordinary Differential Equation Solvers — Theory and Applications
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)
am
ics
Trimpe, S.
Distributed Event-based State Estimation
Max Planck Institute for Intelligent Systems, November 2015 (techreport)
am
ei
ics
pn
Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.
Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results
Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS), pages: , , Machine Learning in Planning and Control of Robot Motion Workshop, October 2015 (conference)
am
ics
Marco, A.
Gaussian Process Optimization for Self-Tuning Control
Polytechnic University of Catalonia (BarcelonaTech), October 2015 (mastersthesis)
am
ics
Doerr, A.
Adaptive and Learning Concepts in Hydraulic Force Control
University of Stuttgart, September 2015 (mastersthesis)
am
ics
Doerr, A., Ratliff, N., Bohg, J., Toussaint, M., Schaal, S.
Direct Loss Minimization Inverse Optimal Control
In Proceedings of Robotics: Science and Systems, Rome, Italy, Robotics: Science and Systems XI, July 2015 (inproceedings)
am
ics
Muehlebach, M., Trimpe, S.
LMI-Based Synthesis for Distributed Event-Based State Estimation
In Proceedings of the American Control Conference, July 2015 (inproceedings)
am
ics
Muehlebach, M., Trimpe, S.
Guaranteed H2 Performance in Distributed Event-Based State Estimation
In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)
am
ics
Trimpe, S., Campi, M.
On the Choice of the Event Trigger in Event-based Estimation
In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)
am
ics
Trimpe, S., Buchli, J.
Event-based Estimation and Control for Remote Robot Operation with Reduced Communication
In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)
am
ics
Trimpe, S.
Lernende Roboter
In Jahrbuch der Max-Planck-Gesellschaft, Max Planck Society, May 2015, (popular science article in German) (inbook)
am
ics
Doerr, A.
Policy Search for Imitation Learning
University of Stuttgart, January 2015 (thesis)
ei
pn
Sgouritsa, E., Janzing, D., Hennig, P., Schölkopf, B.
Inference of Cause and Effect with Unsupervised Inverse Regression
In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 38, pages: 847-855, JMLR Workshop and Conference Proceedings, (Editors: Lebanon, G. and Vishwanathan, S.V.N.), JMLR.org, AISTATS, 2015 (inproceedings)
ei
pn
Hennig, P.
Probabilistic Interpretation of Linear Solvers
SIAM Journal on Optimization, 25(1):234-260, 2015 (article)
ei
pn
Mahsereci, M., Hennig, P.
Probabilistic Line Searches for Stochastic Optimization
In Advances in Neural Information Processing Systems 28, pages: 181-189, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (inproceedings)
ei
pn
Hauberg, S., Schober, M., Liptrot, M., Hennig, P., Feragen, A.
A Random Riemannian Metric for Probabilistic Shortest-Path Tractography
In 18th International Conference on Medical Image Computing and Computer Assisted Intervention, 9349, pages: 597-604, Lecture Notes in Computer Science, MICCAI, 2015 (inproceedings)
am
ics
Wüthrich, M., Trimpe, S., Kappler, D., Schaal, S.
A New Perspective and Extension of the Gaussian Filter
In Robotics: Science and Systems, 2015 (inproceedings)
ei
pn
Hennig, P., Osborne, M. A., Girolami, M.
Probabilistic numerics and uncertainty in computations
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471(2179), 2015 (article)
al
Der, R., Martius, G.
Novel plasticity rule can explain the development of sensorimotor intelligence
Proceedings of the National Academy of Sciences, 112(45):E6224-E6232, 2015 (article)
al
Martius, G., Olbrich, E.
Quantifying Emergent Behavior of Autonomous Robots
Entropy, 17(10):7266, 2015 (article)
ei
ps
pn
Hennig, P., Kiefel, M.
Quasi-Newton Methods: A New Direction
In Proceedings of the 29th International Conference on Machine Learning, pages: 25-32, ICML ’12, (Editors: John Langford and Joelle Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)
ei
pn
Hennig, P., Schuler, C.
Entropy Search for Information-Efficient Global Optimization
Journal of Machine Learning Research, 13, pages: 1809-1837, -, June 2012 (article)
ei
pn
Bócsi, B., Hennig, P., Csató, L., Peters, J.
Learning Tracking Control with Forward Models
In pages: 259 -264, IEEE International Conference on Robotics and Automation (ICRA), May 2012 (inproceedings)