am
ics
Trimpe, S.
Distributed Event-based State Estimation
Max Planck Institute for Intelligent Systems, November 2015 (techreport)
am
ei
ics
pn
Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.
Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results
Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS), pages: , , Machine Learning in Planning and Control of Robot Motion Workshop, October 2015 (conference)
am
ics
Marco, A.
Gaussian Process Optimization for Self-Tuning Control
Polytechnic University of Catalonia (BarcelonaTech), October 2015 (mastersthesis)
am
ics
Doerr, A.
Adaptive and Learning Concepts in Hydraulic Force Control
University of Stuttgart, September 2015 (mastersthesis)
am
ics
Doerr, A., Ratliff, N., Bohg, J., Toussaint, M., Schaal, S.
Direct Loss Minimization Inverse Optimal Control
In Proceedings of Robotics: Science and Systems, Rome, Italy, Robotics: Science and Systems XI, July 2015 (inproceedings)
am
ics
Muehlebach, M., Trimpe, S.
LMI-Based Synthesis for Distributed Event-Based State Estimation
In Proceedings of the American Control Conference, July 2015 (inproceedings)
am
ics
Muehlebach, M., Trimpe, S.
Guaranteed H2 Performance in Distributed Event-Based State Estimation
In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)
am
ics
Trimpe, S., Campi, M.
On the Choice of the Event Trigger in Event-based Estimation
In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)
am
ics
Trimpe, S., Buchli, J.
Event-based Estimation and Control for Remote Robot Operation with Reduced Communication
In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)
am
ics
Trimpe, S.
Lernende Roboter
In Jahrbuch der Max-Planck-Gesellschaft, Max Planck Society, May 2015, (popular science article in German) (inbook)
am
ics
Doerr, A.
Policy Search for Imitation Learning
University of Stuttgart, January 2015 (thesis)
ei
pn
Sgouritsa, E., Janzing, D., Hennig, P., Schölkopf, B.
Inference of Cause and Effect with Unsupervised Inverse Regression
In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 38, pages: 847-855, JMLR Workshop and Conference Proceedings, (Editors: Lebanon, G. and Vishwanathan, S.V.N.), JMLR.org, AISTATS, 2015 (inproceedings)
ei
pn
Hennig, P.
Probabilistic Interpretation of Linear Solvers
SIAM Journal on Optimization, 25(1):234-260, 2015 (article)
ei
pn
Mahsereci, M., Hennig, P.
Probabilistic Line Searches for Stochastic Optimization
In Advances in Neural Information Processing Systems 28, pages: 181-189, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (inproceedings)
ei
pn
Hauberg, S., Schober, M., Liptrot, M., Hennig, P., Feragen, A.
A Random Riemannian Metric for Probabilistic Shortest-Path Tractography
In 18th International Conference on Medical Image Computing and Computer Assisted Intervention, 9349, pages: 597-604, Lecture Notes in Computer Science, MICCAI, 2015 (inproceedings)
am
ics
Wüthrich, M., Trimpe, S., Kappler, D., Schaal, S.
A New Perspective and Extension of the Gaussian Filter
In Robotics: Science and Systems, 2015 (inproceedings)
ei
pn
Hennig, P., Osborne, M. A., Girolami, M.
Probabilistic numerics and uncertainty in computations
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471(2179), 2015 (article)
al
Der, R., Martius, G.
Novel plasticity rule can explain the development of sensorimotor intelligence
Proceedings of the National Academy of Sciences, 112(45):E6224-E6232, 2015 (article)
al
Martius, G., Olbrich, E.
Quantifying Emergent Behavior of Autonomous Robots
Entropy, 17(10):7266, 2015 (article)
ei
ps
pn
Hennig, P., Kiefel, M.
Quasi-Newton Methods: A New Direction
In Proceedings of the 29th International Conference on Machine Learning, pages: 25-32, ICML ’12, (Editors: John Langford and Joelle Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)
ei
pn
Hennig, P., Schuler, C.
Entropy Search for Information-Efficient Global Optimization
Journal of Machine Learning Research, 13, pages: 1809-1837, -, June 2012 (article)
ei
pn
Bócsi, B., Hennig, P., Csató, L., Peters, J.
Learning Tracking Control with Forward Models
In pages: 259 -264, IEEE International Conference on Robotics and Automation (ICRA), May 2012 (inproceedings)
ei
pn
Cunningham, J., Hennig, P., Lacoste-Julien, S.
Approximate Gaussian Integration using Expectation Propagation
In pages: 1-11, -, January 2012 (inproceedings) Submitted
ei
pn
Hennig, P., Stern, D., Herbrich, R., Graepel, T.
Kernel Topic Models
In Fifteenth International Conference on Artificial Intelligence and Statistics, 22, pages: 511-519, JMLR Proceedings, (Editors: Lawrence, N. D. and Girolami, M.), JMLR.org, AISTATS , 2012 (inproceedings)
ei
pn
Klenske, E. D.
Nonparametric System Identification and Control for Periodic Error Correction in Telescopes
University of Stuttgart, 2012 (diplomathesis)
al
Martius, G., Herrmann, J.
Variants of guided self-organization for robot control
Theory in Biosci., 131(3):129-137, Springer Berlin / Heidelberg, 2012 (article)
al
Der, R., Martius, G.
The Playful Machine - Theoretical Foundation and Practical Realization of Self-Organizing Robots
Springer, Berlin Heidelberg, 2012 (book)
al
Martius, G., Herrmann, J. M., Der, R.
Guided Self-organisation for Autonomous Robot Development
In Advances in Artificial Life 9th European Conference, ECAL 2007, 4648, pages: 766-775, LNCS, Springer, 2007 (inproceedings)