Header logo is


2019


no image
How do people learn how to plan?

Jain, Y. R., Gupta, S., Rakesh, V., Dayan, P., Callaway, F., Lieder, F.

Conference on Cognitive Computational Neuroscience, September 2019 (conference)

re

[BibTex]

2019


[BibTex]


no image
What’s in the Adaptive Toolbox and How Do People Choose From It? Rational Models of Strategy Selection in Risky Choice

Mohnert, F., Pachur, T., Lieder, F.

41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

re

[BibTex]


no image
Measuring how people learn how to plan

Jain, Y. R., Callaway, F., Lieder, F.

RLDM 2019, July 2019 (conference)

re

[BibTex]

[BibTex]


no image
Measuring how people learn how to plan

Jain, Y. R., Callaway, F., Lieder, F.

41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

re

[BibTex]

[BibTex]


no image
A cognitive tutor for helping people overcome present bias

Lieder, F., Callaway, F., Jain, Y., Krueger, P., Das, P., Gul, S., Griffiths, T.

RLDM 2019, July 2019 (conference)

re

[BibTex]

[BibTex]


no image
Introducing the Decision Advisor: A simple online tool that helps people overcome cognitive biases and experience less regret in real-life decisions

Iwama, G., Greenberg, S., Moore, D., Lieder, F.

40th Annual Meeting of the Society for Judgement and Decision Making, June 2019 (conference)

re

[BibTex]

[BibTex]


no image
Variational Autoencoders Recover PCA Directions (by Accident)

Rolinek, M., Zietlow, D., Martius, G.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
The Variational Autoencoder (VAE) is a powerful architecture capable of representation learning and generative modeling. When it comes to learning interpretable (disentangled) representations, VAE and its variants show unparalleled performance. However, the reasons for this are unclear, since a very particular alignment of the latent embedding is needed but the design of the VAE does not encourage it in any explicit way. We address this matter and offer the following explanation: the diagonal approximation in the encoder together with the inherent stochasticity force local orthogonality of the decoder. The local behavior of promoting both reconstruction and orthogonality matches closely how the PCA embedding is chosen. Alongside providing an intuitive understanding, we justify the statement with full theoretical analysis as well as with experiments.

al

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


no image
Elastic modulus affects adhesive strength of gecko-inspired synthetics in variable temperature and humidity

Mitchell, CT, Drotlef, D, Dayan, CB, Sitti, M, Stark, AY

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E372-E372, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, March 2019 (inproceedings)

pi

[BibTex]

[BibTex]


no image
X-ray Optics Fabrication Using Unorthodox Approaches

Sanli, U., Baluktsian, M., Ceylan, H., Sitti, M., Weigand, M., Schütz, G., Keskinbora, K.

Bulletin of the American Physical Society, APS, 2019 (article)

mms pi

[BibTex]

[BibTex]


Thumb xl as20205.f2
Microrobotics and Microorganisms: Biohybrid Autonomous Cellular Robots

Alapan, Y., Yasa, O., Yigit, B., Yasa, I. C., Erkoc, P., Sitti, M.

Annual Review of Control, Robotics, and Autonomous Systems, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl woodw1 2892811 large
Tailored Magnetic Springs for Shape-Memory Alloy Actuated Mechanisms in Miniature Robots

Woodward, M. A., Sitti, M.

IEEE Transactions on Robotics, 35, 2019 (article)

Abstract
Animals can incorporate large numbers of actuators because of the characteristics of muscles; whereas, robots cannot, as typical motors tend to be large, heavy, and inefficient. However, shape-memory alloys (SMA), materials that contract during heating because of change in their crystal structure, provide another option. SMA, though, is unidirectional and therefore requires an additional force to reset (extend) the actuator, which is typically provided by springs or antagonistic actuation. These strategies, however, tend to limit the actuator's work output and functionality as their force-displacement relationships typically produce increasing resistive force with limited variability. In contrast, magnetic springs-composed of permanent magnets, where the interaction force between magnets mimics a spring force-have much more variable force-displacement relationships and scale well with SMA. However, as of yet, no method for designing magnetic springs for SMA-actuators has been demonstrated. Therefore, in this paper, we present a new methodology to tailor magnetic springs to the characteristics of these actuators, with experimental results both for the device and robot-integrated SMA-actuators. We found magnetic building blocks, based on sets of permanent magnets, which are well-suited to SMAs and have the potential to incorporate features such as holding force, state transitioning, friction minimization, auto-alignment, and self-mounting. We show magnetic springs that vary by more than 3 N in 750 $\mu$m and two SMA-actuated devices that allow the MultiMo-Bat to reach heights of up to 4.5 m without, and 3.6 m with, integrated gliding airfoils. Our results demonstrate the potential of this methodology to add previously impossible functionality to smart material actuators. We anticipate this methodology will inspire broader consideration of the use of magnetic springs in miniature robots and further study of the potential of tailored magnetic springs throughout mechanical systems.

pi

DOI [BibTex]


Thumb xl figure1
Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy

Son, D., Gilbert, H., Sitti, M.

Soft robotics, Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New …, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl smll201900472 fig 0001 m
Thrust and Hydrodynamic Efficiency of the Bundled Flagella

Danis, U., Rasooli, R., Chen, C., Dur, O., Sitti, M., Pekkan, K.

Micromachines, 10, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl systemillustration
Autonomous Identification and Goal-Directed Invocation of Event-Predictive Behavioral Primitives

Gumbsch, C., Butz, M. V., Martius, G.

IEEE Transactions on Cognitive and Developmental Systems, 2019 (article)

Abstract
Voluntary behavior of humans appears to be composed of small, elementary building blocks or behavioral primitives. While this modular organization seems crucial for the learning of complex motor skills and the flexible adaption of behavior to new circumstances, the problem of learning meaningful, compositional abstractions from sensorimotor experiences remains an open challenge. Here, we introduce a computational learning architecture, termed surprise-based behavioral modularization into event-predictive structures (SUBMODES), that explores behavior and identifies the underlying behavioral units completely from scratch. The SUBMODES architecture bootstraps sensorimotor exploration using a self-organizing neural controller. While exploring the behavioral capabilities of its own body, the system learns modular structures that predict the sensorimotor dynamics and generate the associated behavior. In line with recent theories of event perception, the system uses unexpected prediction error signals, i.e., surprise, to detect transitions between successive behavioral primitives. We show that, when applied to two robotic systems with completely different body kinematics, the system manages to learn a variety of complex behavioral primitives. Moreover, after initial self-exploration the system can use its learned predictive models progressively more effectively for invoking model predictive planning and goal-directed control in different tasks and environments.

al

arXiv PDF video link (url) DOI Project Page [BibTex]


Thumb xl c8sm02215a f1 hi res
The near and far of a pair of magnetic capillary disks

Koens, L., Wang, W., Sitti, M., Lauga, E.

Soft Matter, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl smll201900472 fig 0001 m
Multifarious Transit Gates for Programmable Delivery of Bio‐functionalized Matters

Hu, X., Torati, S. R., Kim, H., Yoon, J., Lim, B., Kim, K., Sitti, M., Kim, C.

Small, Wiley Online Library, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl capture
Multi-functional soft-bodied jellyfish-like swimming

Ren, Z., Hu, W., Dong, X., Sitti, M.

Nature communications, 10, 2019 (article)

pi

[BibTex]


no image
Welcome to Progress in Biomedical Engineering

Sitti, M.

Progress in Biomedical Engineering, 1, IOP Publishing, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Doing more with less: Meta-reasoning and meta-learning in humans and machines

Griffiths, T., Callaway, F., Chang, M., Grant, E., Krueger, P. M., Lieder, F.

Current Opinion in Behavioral Sciences, 2019 (article)

re

DOI [BibTex]

DOI [BibTex]


no image
Machine Learning for Haptics: Inferring Multi-Contact Stimulation From Sparse Sensor Configuration

Sun, H., Martius, G.

Frontiers in Neurorobotics, 13, pages: 51, 2019 (article)

Abstract
Robust haptic sensation systems are essential for obtaining dexterous robots. Currently, we have solutions for small surface areas such as fingers, but affordable and robust techniques for covering large areas of an arbitrary 3D surface are still missing. Here, we introduce a general machine learning framework to infer multi-contact haptic forces on a 3D robot’s limb surface from internal deformation measured by only a few physical sensors. The general idea of this framework is to predict first the whole surface deformation pattern from the sparsely placed sensors and then to infer number, locations and force magnitudes of unknown contact points. We show how this can be done even if training data can only be obtained for single-contact points using transfer learning at the example of a modified limb of the Poppy robot. With only 10 strain-gauge sensors we obtain a high accuracy also for multiple-contact points. The method can be applied to arbitrarily shaped surfaces and physical sensor types, as long as training data can be obtained.

al

link (url) DOI [BibTex]


Thumb xl smll201900472 fig 0001 m
Mechanics of a pressure-controlled adhesive membrane for soft robotic gripping on curved surfaces

Song, S., Drotlef, D., Paik, J., Majidi, C., Sitti, M.

Extreme Mechanics Letters, Elsevier, 2019 (article)

pi

[BibTex]


Thumb xl mt 2018 00757w 0007
Graphene oxide synergistically enhances antibiotic efficacy in Vancomycin resistance Staphylococcus aureus

Singh, V., Kumar, V., Kashyap, S., Singh, A. V., Kishore, V., Sitti, M., Saxena, P. S., Srivastava, A.

ACS Applied Bio Materials, ACS Publications, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl itxm a 1566425 f0001 c
Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design

Singh, A. V., Laux, P., Luch, A., Sudrik, C., Wiehr, S., Wild, A., Santamauro, G., Bill, J., Sitti, M.

Toxicology Mechanisms and Methods, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl capture
Multifunctional and biodegradable self-propelled protein motors

Pena-Francesch, A., Giltinan, J., Sitti, M.

Nature communications, 10, Nature Publishing Group, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl capture
Cohesive self-organization of mobile microrobotic swarms

Yigit, B., Alapan, Y., Sitti, M.

arXiv preprint arXiv:1907.05856, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Cognitive Prostheses for Goal Achievement

Lieder, F., Chen, O. X., Krueger, P. M., Griffiths, T.

Nature Human Behavior, 2019 (article)

re

DOI [BibTex]

DOI [BibTex]


no image
Remediating cognitive decline with cognitive tutors

Das, P., Callaway, F., Griffiths, T., Lieder, F.

RLDM 2019, 2019 (conference)

re

[BibTex]

[BibTex]


Thumb xl adtp201800064 fig 0004 m
Mobile microrobots for active therapeutic delivery

Erkoc, P., Yasa, I. C., Ceylan, H., Yasa, O., Alapan, Y., Sitti, M.

Advanced Therapeutics, Wiley Online Library, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl smll201900472 fig 0001 m
Shape-encoded dynamic assembly of mobile micromachines

Alapan, Y., Yigit, B., Beker, O., Demirörs, A. F., Sitti, M.

Nature, 18, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl adom201801313 fig 0001 m
Microfluidics Integrated Lithography‐Free Nanophotonic Biosensor for the Detection of Small Molecules

Sreekanth, K. V., Sreejith, S., Alapan, Y., Sitti, M., Lim, C. T., Singh, R.

Advanced Optical Materials, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Gecko-inspired composite microfibers for reversible adhesion on smooth and rough surfaces

Drotlef, D., Dayan, C., Sitti, M.

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E58-E58, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, 2019 (inproceedings)

pi

[BibTex]

[BibTex]


Thumb xl 201904010817153241
ENGINEERING Bio-inspired robotic collectives

Sitti, M.

Nature, 567, pages: 314-315, Macmillan Publishers Ltd., London, England, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl capture
Peptide-Induced Biomineralization of Tin Oxide (SnO2) Nanoparticles for Antibacterial Applications

Singh, A. V., Jahnke, T., Xiao, Y., Wang, S., Yu, Y., David, H., Richter, G., Laux, P., Luch, A., Srivastava, A., Saxena, P. S., Bill, J., Sitti, M.

Journal of nanoscience and nanotechnology, 19, American Scientific Publishers, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Electromechanical actuation of dielectric liquid crystal elastomers for soft robotics

Davidson, Z., Shahsavan, H., Guo, Y., Hines, L., Xia, Y., Yang, S., Sitti, M.

Bulletin of the American Physical Society, APS, 2019 (article)

pi

[BibTex]

[BibTex]


no image
A rational reinterpretation of dual process theories

Milli, S., Lieder, F., Griffiths, T.

2019 (article)

re

DOI [BibTex]

DOI [BibTex]