Header logo is


2017


Thumb xl fig toyex lqr1kernel 1
On the Design of LQR Kernels for Efficient Controller Learning

Marco, A., Hennig, P., Schaal, S., Trimpe, S.

Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pages: 5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (conference)

Abstract
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.

am ics pn

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]

2017


arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]


Thumb xl teaser
Optimizing Long-term Predictions for Model-based Policy Search

Doerr, A., Daniel, C., Nguyen-Tuong, D., Marco, A., Schaal, S., Toussaint, M., Trimpe, S.

Proceedings of 1st Annual Conference on Robot Learning (CoRL), 78, pages: 227-238, (Editors: Sergey Levine and Vincent Vanhoucke and Ken Goldberg), 1st Annual Conference on Robot Learning, November 2017 (conference)

Abstract
We propose a novel long-term optimization criterion to improve the robustness of model-based reinforcement learning in real-world scenarios. Learning a dynamics model to derive a solution promises much greater data-efficiency and reusability compared to model-free alternatives. In practice, however, modelbased RL suffers from various imperfections such as noisy input and output data, delays and unmeasured (latent) states. To achieve higher resilience against such effects, we propose to optimize a generative long-term prediction model directly with respect to the likelihood of observed trajectories as opposed to the common approach of optimizing a dynamics model for one-step-ahead predictions. We evaluate the proposed method on several artificial and real-world benchmark problems and compare it to PILCO, a model-based RL framework, in experiments on a manipulation robot. The results show that the proposed method is competitive compared to state-of-the-art model learning methods. In contrast to these more involved models, our model can directly be employed for policy search and outperforms a baseline method in the robot experiment.

am ics

PDF Project Page [BibTex]

PDF Project Page [BibTex]


Thumb xl fig1
Locomotion of light-driven soft microrobots through a hydrogel via local melting

Palagi, S., Mark, A. G., Melde, K., Qiu, T., Zeng, H., Parmeggiani, C., Martella, D., Wiersma, D. S., Fischer, P.

In 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2017 (inproceedings)

Abstract
Soft mobile microrobots whose deformation can be directly controlled by an external field can adapt to move in different environments. This is the case for the light-driven microrobots based on liquid-crystal elastomers (LCEs). Here we show that the soft microrobots can move through an agarose hydrogel by means of light-controlled travelling-wave motions. This is achieved by exploiting the inherent rise of the LCE temperature above the melting temperature of the agarose gel, which facilitates penetration of the microrobot through the hydrogel. The locomotion performance is investigated as a function of the travelling-wave parameters, showing that effective propulsion can be obtained by adapting the generated motion to the specific environmental conditions.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl apollo system2 croped
Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers

Doerr, A., Nguyen-Tuong, D., Marco, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5295-5301, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics

PDF arXiv DOI Project Page [BibTex]

PDF arXiv DOI Project Page [BibTex]


Thumb xl this one
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 1557-1563, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics pn

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]


Thumb xl eururol2017
Wireless micro-robots for endoscopic applications in urology

Adams, F., Qiu, T., Mark, A. G., Melde, K., Palagi, S., Miernik, A., Fischer, P.

In Eur Urol Suppl, 16(3):e1914, March 2017 (inproceedings)

Abstract
Endoscopy is an essential and common method for both diagnostics and therapy in Urology. Current flexible endoscope is normally cable-driven, thus it is hard to be miniaturized and its reachability is restricted as only one bending section near the tip with one degree of freedom (DoF) is allowed. Recent progresses in micro-robotics offer a unique opportunity for medical inspections in minimally invasive surgery. Micro-robots are active devices that has a feature size smaller than one millimeter and can normally be actuated and controlled wirelessly. Magnetically actuated micro-robots have been demonstrated to propel through biological fluids.Here, we report a novel micro robotic arm, which is actuated wirelessly by ultrasound. It works as a miniaturized endoscope with a side length of ~1 mm, which fits through the 3 Fr. tool channel of a cystoscope, and successfully performs an active cystoscopy in a rabbit bladder.

pf

link (url) DOI [BibTex]

2014


Thumb xl fig1
3D nanofabrication on complex seed shapes using glancing angle deposition

Hyeon-Ho, J., Mark, A. G., Gibbs, J. G., Reindl, T., Waizmann, U., Weis, J., Fischer, P.

In 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), pages: 437-440, January 2014 (inproceedings)

Abstract
Three-dimensional (3D) fabrication techniques promise new device architectures and enable the integration of more components, but fabricating 3D nanostructures for device applications remains challenging. Recently, we have performed glancing angle deposition (GLAD) upon a nanoscale hexagonal seed array to create a variety of 3D nanoscale objects including multicomponent rods, helices, and zigzags [1]. Here, in an effort to generalize our technique, we present a step-by-step approach to grow 3D nanostructures on more complex nanoseed shapes and configurations than before. This approach allows us to create 3D nanostructures on nanoseeds regardless of seed sizes and shapes.

pf

DOI [BibTex]

2014


DOI [BibTex]


no image
A Self-Tuning LQR Approach Demonstrated on an Inverted Pendulum

Trimpe, S., Millane, A., Doessegger, S., D’Andrea, R.

In Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, 2014 (inproceedings)

am ics

PDF Supplementary material DOI [BibTex]

PDF Supplementary material DOI [BibTex]


Thumb xl toc image
Active Microrheology of the Vitreous of the Eye applied to Nanorobot Propulsion

Qiu, T., Schamel, D., Mark, A. G., Fischer, P.

In 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), pages: 3801-3806, IEEE International Conference on Robotics and Automation ICRA, 2014, Best Automation Paper Award – Finalist. (inproceedings)

Abstract
Biomedical applications of micro or nanorobots require active movement through complex biological fluids. These are generally non-Newtonian (viscoelastic) fluids that are characterized by complicated networks of macromolecules that have size-dependent rheological properties. It has been suggested that an untethered microrobot could assist in retinal surgical procedures. To do this it must navigate the vitreous humor, a hydrated double network of collagen fibrils and high molecular-weight, polyanionic hyaluronan macromolecules. Here, we examine the characteristic size that potential robots must have to traverse vitreous relatively unhindered. We have constructed magnetic tweezers that provide a large gradient of up to 320 T/m to pull sub-micron paramagnetic beads through biological fluids. A novel two-step electrical discharge machining (EDM) approach is used to construct the tips of the magnetic tweezers with a resolution of 30 mu m and high aspect ratio of similar to 17:1 that restricts the magnetic field gradient to the plane of observation. We report measurements on porcine vitreous. In agreement with structural data and passive Brownian diffusion studies we find that the unhindered active propulsion through the eye calls for nanorobots with cross-sections of less than 500 nm.

Best Automation Paper Award – Finalist.

pf

[BibTex]

[BibTex]


no image
Stability Analysis of Distributed Event-Based State Estimation

Trimpe, S.

In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, 2014 (inproceedings)

Abstract
An approach for distributed and event-based state estimation that was proposed in previous work [1] is analyzed and extended to practical networked systems in this paper. Multiple sensor-actuator-agents observe a dynamic process, sporadically exchange their measurements over a broadcast network according to an event-based protocol, and estimate the process state from the received data. The event-based approach was shown in [1] to mimic a centralized Luenberger observer up to guaranteed bounds, under the assumption of identical estimates on all agents. This assumption, however, is unrealistic (it is violated by a single packet drop or slight numerical inaccuracy) and removed herein. By means of a simulation example, it is shown that non-identical estimates can actually destabilize the overall system. To achieve stability, the event-based communication scheme is supplemented by periodic (but infrequent) exchange of the agentsâ?? estimates and reset to their joint average. When the local estimates are used for feedback control, the stability guarantee for the estimation problem extends to the event-based control system.

am ics

PDF Supplementary material DOI Project Page [BibTex]

PDF Supplementary material DOI Project Page [BibTex]


no image
Self-Exploration of the Stumpy Robot with Predictive Information Maximization

Martius, G., Jahn, L., Hauser, H., V. Hafner, V.

In Proc. From Animals to Animats, SAB 2014, 8575, pages: 32-42, LNCS, Springer, 2014 (inproceedings)

al

[BibTex]

[BibTex]