al
Rolinek, M., Zietlow, D., Martius, G.
Variational Autoencoders Recover PCA Directions (by Accident)
In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)
al
Blaes, S., Vlastelica, M., Zhu, J., Martius, G.
Control What You Can: Intrinsically Motivated Task-Planning Agent
In Advances in Neural Information Processing (NeurIPS’19), Curran Associates, Inc., NeurIPS'19, 2019 (inproceedings)
al
Gumbsch, C., Butz, M. V., Martius, G.
Autonomous Identification and Goal-Directed Invocation of Event-Predictive Behavioral Primitives
IEEE Transactions on Cognitive and Developmental Systems, 2019 (article)
al
Lin, S., Martius, G., Oettel, M.
Analytical classical density functionals from an equation learning network
2019, arXiv preprint \url{https://arxiv.org/abs/1910.12752} (misc)
al
Sun, H., Martius, G.
Machine Learning for Haptics: Inferring Multi-Contact Stimulation From Sparse Sensor Configuration
Frontiers in Neurorobotics, 13, pages: 51, 2019 (article)
al
ics
Baumann, D., Zhu, J., Martius, G., Trimpe, S.
Deep Reinforcement Learning for Event-Triggered Control
In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 943-950, 57th IEEE International Conference on Decision and Control (CDC), December 2018 (inproceedings)
al
Botella-Soler, V., Deny, S., Martius, G., Marre, O., Tkačik, G.
Nonlinear decoding of a complex movie from the mammalian retina
PLOS Computational Biology, 14(5):1-27, Public Library of Science, May 2018 (article)
al
Rolinek, M., Martius, G.
L4: Practical loss-based stepsize adaptation for deep learning
In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), pages: 6434-6444, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 2018 (inproceedings)
al
Pinneri, C., Martius, G.
Systematic self-exploration of behaviors for robots in a dynamical systems framework
In Proc. Artificial Life XI, pages: 319-326, MIT Press, Cambridge, MA, 2018 (inproceedings)
al
Sahoo, S. S., Lampert, C. H., Martius, G.
Learning equations for extrapolation and control
In Proc. 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, 2018, 80, pages: 4442-4450, http://proceedings.mlr.press/v80/sahoo18a/sahoo18a.pdf, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, 2018 (inproceedings)
al
Sun, H., Martius, G.
Robust Affordable 3D Haptic Sensation via Learning Deformation Patterns
Proceedings International Conference on Humanoid Robots, pages: 846-853, IEEE, New York, NY, USA, 2018 IEEE-RAS International Conference on Humanoid Robots, 2018, Oral Presentation (conference)
al
Martius, G., Lampert, C. H.
Extrapolation and learning equations
2016, arXiv preprint \url{https://arxiv.org/abs/1610.02995} (misc)
al
Martius, G., Herrmann, J. M.
Tipping the Scales: Guidance and Intrinsically Motivated Behavior
In Advances in Artificial Life, ECAL 2011, pages: 506-513, (Editors: Tom Lenaerts and Mario Giacobini and Hugues Bersini and Paul Bourgine and Marco Dorigo and René Doursat), MIT Press, 2011 (incollection)