Header logo is


2019


no image
Assessing Aesthetics of Generated Abstract Images Using Correlation Structure

Khajehabdollahi, S., Martius, G., Levina, A.

In Proceedings 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pages: 306-313, IEEE, 2019 IEEE Symposium Series on Computational Intelligence (SSCI), December 2019 (inproceedings)

al

DOI [BibTex]

2019


DOI [BibTex]


EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association
EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

Strecke, M., Stückler, J.

Proceedings International Conference on Computer Vision 2019 (ICCV), pages: 5864-5873, IEEE, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), October 2019 (conference)

ev

preprint Project page Code Poster DOI [BibTex]

preprint Project page Code Poster DOI [BibTex]


no image
Learning to Disentangle Latent Physical Factors for Video Prediction

Zhu, D., Munderloh, M., Rosenhahn, B., Stückler, J.

In Pattern Recognition - Proceedings German Conference on Pattern Recognition (GCPR), Springer International, German Conference on Pattern Recognition (GCPR), September 2019 (inproceedings)

ev

dataset & evaluation code video preprint DOI [BibTex]

dataset & evaluation code video preprint DOI [BibTex]


no image
3D Birds-Eye-View Instance Segmentation

Elich, C., Engelmann, F., Kontogianni, T., Leibe, B.

In Pattern Recognition - Proceedings 41st DAGM German Conference, DAGM GCPR 2019, pages: 48-61, Lecture Notes in Computer Science (LNCS) 11824, (Editors: Fink G.A., Frintrop S., Jiang X.), Springer, 2019 German Conference on Pattern Recognition (GCPR), September 2019, ISSN: 03029743 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Variational Autoencoders Pursue PCA Directions (by Accident)

Rolinek, M., Zietlow, D., Martius, G.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
The Variational Autoencoder (VAE) is a powerful architecture capable of representation learning and generative modeling. When it comes to learning interpretable (disentangled) representations, VAE and its variants show unparalleled performance. However, the reasons for this are unclear, since a very particular alignment of the latent embedding is needed but the design of the VAE does not encourage it in any explicit way. We address this matter and offer the following explanation: the diagonal approximation in the encoder together with the inherent stochasticity force local orthogonality of the decoder. The local behavior of promoting both reconstruction and orthogonality matches closely how the PCA embedding is chosen. Alongside providing an intuitive understanding, we justify the statement with full theoretical analysis as well as with experiments.

al

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


no image
Falsification of hybrid systems using symbolic reachability and trajectory splicing

Bogomolov, S., Frehse, G., Gurung, A., Li, D., Martius, G., Ray, R.

In Proceedings International Conference on Hybrid Systems: Computation and Control (HSCC ’19), pages: 1-10, ACM, International Conference on Hybrid Systems: Computation and Control (HSCC '19), April 2019 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


no image
Control What You Can: Intrinsically Motivated Task-Planning Agent

Blaes, S., Vlastelica, M., Zhu, J., Martius, G.

In Advances in Neural Information Processing (NeurIPS’19), pages: 12520-12531, Curran Associates, Inc., NeurIPS'19, 2019 (inproceedings)

Abstract
We present a novel intrinsically motivated agent that learns how to control the environment in the fastest possible manner by optimizing learning progress. It learns what can be controlled, how to allocate time and attention, and the relations between objects using surprise based motivation. The effectiveness of our method is demonstrated in a synthetic as well as a robotic manipulation environment yielding considerably improved performance and smaller sample complexity. In a nutshell, our work combines several task-level planning agent structures (backtracking search on task graph, probabilistic road-maps, allocation of search efforts) with intrinsic motivation to achieve learning from scratch.

al

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Soft Sensors for Curvature Estimation under Water in a Soft Robotic Fish

Wright, Brian, Vogt, Daniel M., Wood, Robert J., Jusufi, Ardian

In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft 2019), pages: 367-371, IEEE, Piscataway, NJ, 2nd IEEE International Conference on Soft Robotics (RoboSoft 2019), 2019 (inproceedings)

bio

DOI [BibTex]

DOI [BibTex]


no image
Heads or Tails? Cranio-Caudal Mass Distribution for Robust Locomotion with Biorobotic Appendages Composed of 3D-Printed Soft Materials

Siddall, R., Schwab, F., Michel, J., Weaver, J., Jusufi, A.

In Biomimetic and Biohybrid Systems, 11556, pages: 240-253, Lecture Notes in Artificial Intelligence, (Editors: Martinez-Hernandez, Uriel and Vouloutsi, Vasiliki and Mura, Anna and Mangan, Michael and Asada, Minoru and Prescott, Tony J. and Verschure, Paul F. M. J.), Springer, Cham, Living Machines 2019: 8th International Conference on Biomimetic and Biohybrid Systems, 2019 (inproceedings)

bio

DOI [BibTex]

DOI [BibTex]