Header logo is


2017


no image
Self-Organized Behavior Generation for Musculoskeletal Robots

Der, R., Martius, G.

Frontiers in Neurorobotics, 11, pages: 8, 2017 (article)

al

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]


no image
Community detection, link prediction, and layer interdependence in multilayer networks

De Bacco, C., Power, E. A., Larremore, D. B., Moore, C.

Physical Review E, 95(4):042317, APS, 2017 (article)

pio

Code Preprint link (url) Project Page [BibTex]

Code Preprint link (url) Project Page [BibTex]

2015


no image
The average number of distinct sites visited by a random walker on random graphs

De Bacco, C., Majumdar, S. N., Sollich, P.

Journal of Physics A: Mathematical and Theoretical, 48(20):205004, IOP Publishing, 2015 (article)

pio

Preprint link (url) [BibTex]

2015


Preprint link (url) [BibTex]


no image
The edge-disjoint path problem on random graphs by message-passing

Altarelli, F., Braunstein, A., Dall’Asta, L., De Bacco, C., Franz, S.

PloS one, 10(12):e0145222, Public Library of Science, 2015 (article)

pio

Code Preprint link (url) Project Page [BibTex]

Code Preprint link (url) Project Page [BibTex]


no image
Non-equilibrium statistical mechanics of the heat bath for two Brownian particles : Internal degrees of freedom found where there shouldn’t be (Special Issue on New Challenges in Complex Systems Science)

De Bacco, C., Baldovin, F., Orlandini, E.

理工研報告特集号 : ASTE : advances in science, technology and environmentology : special issue, 11, pages: 111-113, 早稲田大学理工学術院総合研究所 (理工学研究所), March 2015 (article)

pio

link (url) [BibTex]

link (url) [BibTex]


no image
Novel plasticity rule can explain the development of sensorimotor intelligence

Der, R., Martius, G.

Proceedings of the National Academy of Sciences, 112(45):E6224-E6232, 2015 (article)

Abstract
Grounding autonomous behavior in the nervous system is a fundamental challenge for neuroscience. In particular, self-organized behavioral development provides more questions than answers. Are there special functional units for curiosity, motivation, and creativity? This paper argues that these features can be grounded in synaptic plasticity itself, without requiring any higher-level constructs. We propose differential extrinsic plasticity (DEP) as a new synaptic rule for self-learning systems and apply it to a number of complex robotic systems as a test case. Without specifying any purpose or goal, seemingly purposeful and adaptive rhythmic behavior is developed, displaying a certain level of sensorimotor intelligence. These surprising results require no system-specific modifications of the DEP rule. They rather arise from the underlying mechanism of spontaneous symmetry breaking, which is due to the tight brain body environment coupling. The new synaptic rule is biologically plausible and would be an interesting target for neurobiological investigation. We also argue that this neuronal mechanism may have been a catalyst in natural evolution.

al

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Decentralized network control, optimization and random walks on networks

De Bacco, C.

(2015PA112164), Université Paris Sud - Paris XI, sep 2015 (phdthesis)

pio

link (url) [BibTex]

link (url) [BibTex]


no image
Quantifying Emergent Behavior of Autonomous Robots

Martius, G., Olbrich, E.

Entropy, 17(10):7266, 2015 (article)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2014


no image
Nonequilibrium statistical mechanics of the heat bath for two Brownian particles

De Bacco, C., Baldovin, F., Orlandini, E., Sekimoto, K.

Physical review letters, 112(18):180605, APS, 2014 (article)

pio

Preprint link (url) [BibTex]

2014


Preprint link (url) [BibTex]


no image
Shortest node-disjoint paths on random graphs

De Bacco, C., Franz, S., Saad, D., Yeung, C. H.

Journal of Statistical Mechanics: Theory and Experiment, 2014(7):P07009, IOP Publishing, 2014 (article)

pio

Preprint link (url) Project Page [BibTex]

Preprint link (url) Project Page [BibTex]


no image
Self-Exploration of the Stumpy Robot with Predictive Information Maximization

Martius, G., Jahn, L., Hauser, H., V. Hafner, V.

In Proc. From Animals to Animats, SAB 2014, 8575, pages: 32-42, LNCS, Springer, 2014 (inproceedings)

al

[BibTex]

[BibTex]


no image
Robot Learning by Guided Self-Organization

Martius, G., Der, R., Herrmann, J. M.

In Guided Self-Organization: Inception, 9, pages: 223-260, Emergence, Complexity and Computation, Springer Berlin Heidelberg, 2014 (incollection)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2007


no image
Guided Self-organisation for Autonomous Robot Development

Martius, G., Herrmann, J. M., Der, R.

In Advances in Artificial Life 9th European Conference, ECAL 2007, 4648, pages: 766-775, LNCS, Springer, 2007 (inproceedings)

al

[BibTex]

2007


[BibTex]


no image
Deep Graph Matching via Blackbox Differentiation of Combinatorial Solvers

Rolinek, M., Swoboda, P., Zietlow, D., Paulus, A., Musil, V., Martius, G.

Arxiv (article)

Abstract
Building on recent progress at the intersection of combinatorial optimization and deep learning, we propose an end-to-end trainable architecture for deep graph matching that contains unmodified combinatorial solvers. Using the presence of heavily optimized combinatorial solvers together with some improvements in architecture design, we advance state-of-the-art on deep graph matching benchmarks for keypoint correspondence. In addition, we highlight the conceptual advantages of incorporating solvers into deep learning architectures, such as the possibility of post-processing with a strong multi-graph matching solver or the indifference to changes in the training setting. Finally, we propose two new challenging experimental setups

al

Arxiv [BibTex]