al
Rolinek, M., Zietlow, D., Martius, G.
Variational Autoencoders Recover PCA Directions (by Accident)
In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)
am
Kloss, A., Bauza, M., Wu, J., Tenenbaum, J. B., Rodriguez, A., Bohg, J.
Accurate Vision-based Manipulation through Contact Reasoning
In International Conference on Robotics and Automation, May 2019 (inproceedings) Submitted
am
Sutanto, G., Ratliff, N., Sundaralingam, B., Chebotar, Y., Su, Z., Handa, A., Fox, D.
Learning Latent Space Dynamics for Tactile Servoing
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings) Accepted
al
Blaes, S., Vlastelica, M., Zhu, J., Martius, G.
Control What You Can: Intrinsically Motivated Task-Planning Agent
In Advances in Neural Information Processing (NeurIPS’19), Curran Associates, Inc., NeurIPS'19, 2019 (inproceedings)
al
Gumbsch, C., Butz, M. V., Martius, G.
Autonomous Identification and Goal-Directed Invocation of Event-Predictive Behavioral Primitives
IEEE Transactions on Cognitive and Developmental Systems, 2019 (article)
al
Lin, S., Martius, G., Oettel, M.
Analytical classical density functionals from an equation learning network
2019, arXiv preprint \url{https://arxiv.org/abs/1910.12752} (misc)
al
Sun, H., Martius, G.
Machine Learning for Haptics: Inferring Multi-Contact Stimulation From Sparse Sensor Configuration
Frontiers in Neurorobotics, 13, pages: 51, 2019 (article)
am
Berenz, V., Bjelic, A., Mainprice, J.
Automated Generation of Reactive Programs from Human Demonstration for Orchestration of Robot Behaviors
ArXiv, 2019 (article)
al
ics
Baumann, D., Zhu, J., Martius, G., Trimpe, S.
Deep Reinforcement Learning for Event-Triggered Control
In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 943-950, 57th IEEE International Conference on Decision and Control (CDC), December 2018 (inproceedings)
am
Anderson, M., Anderson, S., Berenz, V.
A Value-Driven Eldercare Robot: Virtual and Physical Instantiations of a Case-Supported Principle-Based Behavior Paradigm
Proceedings of the IEEE, pages: 1,15, October 2018 (article)
am
Berenz, V., Schaal, S.
Playful: Reactive Programming for Orchestrating Robotic Behavior
IEEE Robotics Automation Magazine, 25(3):49-60, September 2018 (article) In press
am
Shao, L., Tian, Y., Bohg, J.
ClusterNet: Instance Segmentation in RGB-D Images
arXiv, September 2018, Submitted to ICRA'19 (article) Submitted
am
mg
Merzic, H., Bogdanovic, M., Kappler, D., Righetti, L., Bohg, J.
Leveraging Contact Forces for Learning to Grasp
arXiv, September 2018, Submitted to ICRA'19 (article) Submitted
am
ics
Doerr, A., Daniel, C., Schiegg, M., Nguyen-Tuong, D., Schaal, S., Toussaint, M., Trimpe, S.
Probabilistic Recurrent State-Space Models
In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), July 2018 (inproceedings)
am
Kappler, D., Meier, F., Issac, J., Mainprice, J., Garcia Cifuentes, C., Wüthrich, M., Berenz, V., Schaal, S., Ratliff, N., Bohg, J.
Real-time Perception meets Reactive Motion Generation
IEEE Robotics and Automation Letters, 3(3):1864-1871, July 2018 (article)
am
Meier, F., Kappler, D., Schaal, S.
Online Learning of a Memory for Learning Rates
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018, accepted (inproceedings)
am
Sutanto, G., Su, Z., Schaal, S., Meier, F.
Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)
al
Botella-Soler, V., Deny, S., Martius, G., Marre, O., Tkačik, G.
Nonlinear decoding of a complex movie from the mammalian retina
PLOS Computational Biology, 14(5):1-27, Public Library of Science, May 2018 (article)
am
ics
Muehlebach, M., Trimpe, S.
Distributed Event-Based State Estimation for Networked Systems: An LMI Approach
IEEE Transactions on Automatic Control, 63(1):269-276, January 2018 (article)
am
mg
Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.
On Time Optimization of Centroidal Momentum Dynamics
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 5776-5782, IEEE, Brisbane, Australia, 2018 (inproceedings)
am
Kloss, A., Schaal, S., Bohg, J.
Combining learned and analytical models for predicting action effects
arXiv, 2018 (article) Submitted
al
Rolinek, M., Martius, G.
L4: Practical loss-based stepsize adaptation for deep learning
In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), pages: 6434-6444, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 2018 (inproceedings)
al
Pinneri, C., Martius, G.
Systematic self-exploration of behaviors for robots in a dynamical systems framework
In Proc. Artificial Life XI, pages: 319-326, MIT Press, Cambridge, MA, 2018 (inproceedings)
al
Sahoo, S. S., Lampert, C. H., Martius, G.
Learning equations for extrapolation and control
In Proc. 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, 2018, 80, pages: 4442-4450, http://proceedings.mlr.press/v80/sahoo18a/sahoo18a.pdf, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, 2018 (inproceedings)
al
Sun, H., Martius, G.
Robust Affordable 3D Haptic Sensation via Learning Deformation Patterns
Proceedings International Conference on Humanoid Robots, pages: 846-853, IEEE, New York, NY, USA, 2018 IEEE-RAS International Conference on Humanoid Robots, 2018, Oral Presentation (conference)
am
mg
Rotella, N., Schaal, S., Righetti, L.
Unsupervised Contact Learning for Humanoid Estimation and Control
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 411-417, IEEE, Brisbane, Australia, 2018 (inproceedings)
am
mg
Gams, A., Mason, S., Ude, A., Schaal, S., Righetti, L.
Learning Task-Specific Dynamics to Improve Whole-Body Control
In Hua, IEEE, Beijing, China, November 2018 (inproceedings)
am
mg
Mason, S., Rotella, N., Schaal, S., Righetti, L.
An MPC Walking Framework With External Contact Forces
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1785-1790, IEEE, Brisbane, Australia, May 2018 (inproceedings)
am
Schaal, S.
Dynamic movement primitives - A framework for motor control in humans and humanoid robots
In The International Symposium on Adaptive Motion of Animals and Machines, Kyoto, Japan, March 4-8, 2003, March 2003, clmc (inproceedings)
am
D’Souza, A., Vijayakumar, S., Schaal, S.
Bayesian backfitting
In Proceedings of the 10th Joint Symposium on Neural Computation (JSNC 2003), Irvine, CA, May 2003, 2003, clmc (inproceedings)
am
Peters, J., Vijayakumar, S., Schaal, S.
Reinforcement learning for humanoid robotics
In IEEE-RAS International Conference on Humanoid Robots (Humanoids2003), Karlsruhe, Germany, Sept.29-30, 2003, clmc (inproceedings)
am
Billard, A., Epars, Y., Schaal, S., Cheng, G.
Discovering imitation strategies through categorization of multi-cimensional data
In IEEE International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, Oct. 27-31, 2003, clmc (inproceedings)
am
Peters, J., Vijayakumar, S., Schaal, S.
Scaling reinforcement learning paradigms for motor learning
In Proceedings of the 10th Joint Symposium on Neural Computation (JSNC 2003), Irvine, CA, May 2003, 2003, clmc (inproceedings)
am
Ijspeert, A., Nakanishi, J., Schaal, S.
Learning attractor landscapes for learning motor primitives
In Advances in Neural Information Processing Systems 15, pages: 1547-1554, (Editors: Becker, S.;Thrun, S.;Obermayer, K.), Cambridge, MA: MIT Press, 2003, clmc (inproceedings)
am
Nakanishi, J., Morimoto, J., Endo, G., Schaal, S., Kawato, M.
Learning from demonstration and adaptation of biped locomotion with dynamical movement primitives
In Workshop on Robot Learning by Demonstration, IEEE International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, Oct. 27-31, 2003, clmc (inproceedings)
am
Schaal, S.
Movement planning and imitation by shaping nonlinear attractors
In Proceedings of the 12th Yale Workshop on Adaptive and Learning Systems, Yale University, New Haven, CT, 2003, clmc (inproceedings)
am
Schaal, S., Ijspeert, A., Billard, A.
Computational approaches to motor learning by imitation
Philosophical Transaction of the Royal Society of London: Series B, Biological Sciences, 358(1431):537-547, 2003, clmc (article)
am
Schaal, S., Sternad, D.
Programmable pattern generators
In 3rd International Conference on Computational Intelligence in Neuroscience, pages: 48-51, Research Triangle Park, NC, Oct. 24-28, October 1998, clmc (inproceedings)
am
Vijayakumar, S., Schaal, S.
Robust local learning in high dimensional spaces
In 5th Joint Symposium on Neural Computation, pages: 186-193, Institute for Neural Computation, University of California, San Diego, San Diego, CA, 1998, clmc (inproceedings)
am
Schaal, S., Vijayakumar, S., Atkeson, C. G.
Local dimensionality reduction
In Advances in Neural Information Processing Systems 10, pages: 633-639, (Editors: Jordan, M. I.;Kearns, M. J.;Solla, S. A.), MIT Press, Cambridge, MA, 1998, clmc (inproceedings)
am
Schaal, S., Atkeson, C. G.
Constructive incremental learning from only local information
Neural Computation, 10(8):2047-2084, 1998, clmc (article)
am
Shibata, T., Schaal, S.
Biomimetic gaze stabilization based on a study of the vestibulocerebellum
In European Workshop on Learning Robots, pages: 84-94, Edinburgh, UK, 1998, clmc (inproceedings)
am
Shibata, T., Schaal, S.
Towards biomimetic vision
In International Conference on Intelligence Robots and Systems, pages: 872-879, Victoria, Canada, 1998, clmc (inproceedings)
am
Vijayakumar, S., Schaal, S.
Local adaptive subspace regression
Neural Processing Letters, 7(3):139-149, 1998, clmc (article)
am
Atkeson, C. G., Moore, A. W., Schaal, S.
Locally weighted learning
Artificial Intelligence Review, 11(1-5):11-73, 1997, clmc (article)
am
Atkeson, C. G., Moore, A. W., Schaal, S.
Locally weighted learning for control
Artificial Intelligence Review, 11(1-5):75-113, 1997, clmc (article)
am
Schaal, S.
Learning from demonstration
In Advances in Neural Information Processing Systems 9, pages: 1040-1046, (Editors: Mozer, M. C.;Jordan, M.;Petsche, T.), MIT Press, Cambridge, MA, 1997, clmc (inproceedings)
am
Atkeson, C. G., Schaal, S.
Robot learning from demonstration
In Machine Learning: Proceedings of the Fourteenth International Conference (ICML ’97), pages: 12-20, (Editors: Fisher Jr., D. H.), Morgan Kaufmann, Nashville, TN, July 8-12, 1997, 1997, clmc (inproceedings)
am
Vijayakumar, S., Schaal, S.
Local dimensionality reduction for locally weighted learning
In International Conference on Computational Intelligence in Robotics and Automation, pages: 220-225, Monteray, CA, July10-11, 1997, 1997, clmc (inproceedings)
am
Atkeson, C. G., Schaal, S.
Learning tasks from a single demonstration
In IEEE International Conference on Robotics and Automation (ICRA97), 2, pages: 1706-1712, Piscataway, NJ: IEEE, Albuquerque, NM, 20-25 April, 1997, clmc (inproceedings)