Header logo is


2020


Excursion Search for Constrained Bayesian Optimization under a Limited Budget of Failures
Excursion Search for Constrained Bayesian Optimization under a Limited Budget of Failures

Marco, A., Rohr, A. V., Baumann, D., Hernández-Lobato, J. M., Trimpe, S.

2020 (proceedings) In revision

Abstract
When learning to ride a bike, a child falls down a number of times before achieving the first success. As falling down usually has only mild consequences, it can be seen as a tolerable failure in exchange for a faster learning process, as it provides rich information about an undesired behavior. In the context of Bayesian optimization under unknown constraints (BOC), typical strategies for safe learning explore conservatively and avoid failures by all means. On the other side of the spectrum, non conservative BOC algorithms that allow failing may fail an unbounded number of times before reaching the optimum. In this work, we propose a novel decision maker grounded in control theory that controls the amount of risk we allow in the search as a function of a given budget of failures. Empirical validation shows that our algorithm uses the failures budget more efficiently in a variety of optimization experiments, and generally achieves lower regret, than state-of-the-art methods. In addition, we propose an original algorithm for unconstrained Bayesian optimization inspired by the notion of excursion sets in stochastic processes, upon which the failures-aware algorithm is built.

ics am

arXiv code (python) PDF [BibTex]

2016


Skinned multi-person linear model
Skinned multi-person linear model

Black, M.J., Loper, M., Mahmood, N., Pons-Moll, G., Romero, J.

December 2016, Application PCT/EP2016/064610 (misc)

Abstract
The invention comprises a learned model of human body shape and pose dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity- dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. The invention quantitatively evaluates variants of SMPL using linear or dual- quaternion blend skinning and show that both are more accurate than a Blend SCAPE model trained on the same data. In a further embodiment, the invention realistically models dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

ps

Google Patents [BibTex]

2016


Google Patents [BibTex]


Perceiving Systems (2011-2015)
Perceiving Systems (2011-2015)
Scientific Advisory Board Report, 2016 (misc)

ps

pdf [BibTex]

pdf [BibTex]


no image
Extrapolation and learning equations

Martius, G., Lampert, C. H.

2016, arXiv preprint \url{https://arxiv.org/abs/1610.02995} (misc)

al

Project Page [BibTex]

Project Page [BibTex]

2015


Proceedings of the 37th German Conference on Pattern Recognition
Proceedings of the 37th German Conference on Pattern Recognition

Gall, J., Gehler, P., Leibe, B.

Springer, German Conference on Pattern Recognition, October 2015 (proceedings)

ps

GCPR conference website [BibTex]

2015


GCPR conference website [BibTex]