Header logo is
Independent Research Groups
Autonomous Vision

Max Planck Research Group for Autonomous Vision

Our group is co-located at the University of Tübingen and the MPI for Intelligent Systems in Tübingen. We are interested in computer vision and machine learning with a focus on 3D scene understanding, parsing, reconstruction, material and motion estimation for autonomous intelligent systems such as self-driving cars or household robots. In particular, we investigate how complex prior knowledge can be incorporated into computer vision algorithms for making them robust to variations in our complex 3D world. You can follow us on GoogleScholar (paper email alert), on Read More


Autonomous Learning

Max Planck Research Group for Autonomous Learning

We are interested in autonomous learning, that is how an embodied agent can determine what to learn, how to learn, and how to judge the learning success. In particular, we focus on learning to control a robotic body in a developmental fashion. Artificial intrinsic motivations are a central component that we develop using information theory and dynamical systems theory. We work on reinforcement learning, representation learning, and internal model learning.


Dynamic Locomotion

We investigate principles of biomechanics and control of dynamic locomotion, in legged animals and robots.

We are extending research in biomechanics and neurocontrol by implementing and controlling custom designed, legged robots, and their simulated models. We see dynamic legged locomotion as the product of a tightly interconnected and adapted motor control, sensing, and mechanical system. Understanding the underlying principles that enable animals with limited control bandwidth to achieve both agile and robust locomotion is an exemplary key question in legged locomotion. Research at the Dynamic Locomotion Group focuses on applying legged robots and their models to provide biomechanically relevant locomotion data. This allows us to qualitatively and quantitatively analyze and compare legged locomotion, in robots and animals. We are interested in testing and applying both existing locomotion control concepts, and learning new concepts of locomotion control. We are especially interested in bip... Read More


Max Planck Independent Research Group for Embodied Vision

We research fundamentals of intelligent embodied agents such as robots that learn to perceive and act through interaction with their environment. Our group investigates novel methods for learning the basic physical 3D understanding of dynamic environments up to complex tasks such as autonomous navigation and object manipulation from raw sensory measurements and environment interactions. Besides vision as a primary sensing modality, we also consider further sensing modalities such as tactile or proprioceptive sensing.


Intelligent Control Systems

The independent Max Planck Research Group on Intelligent Control Systems.

Research in the Intelligent Control Systems group focuses on decision making, control, and learning for autonomous intelligent systems. We develop fundamental methods and algorithms that enable robots and other intelligent systems to interact with their environment through feedback, autonomously learn from data, and interconnect with each other to form collaborative networks. Turning mathematical and theoretical insight into enhanced autonomy and performance of real-world physical systems is an important and driving facet of our work. The Intelligent Control Systems group is an independent Max Planck Research Group at MPI-IS Stuttgart primarily funded through the Cyber Valley Initiative.


Micro, Nano, and Molecular Systems

Our group has broad interests in the interaction of optical, electric, and magnetic fields with matter at small length scales. We work on new 3-D fabrication methods, self-assembly, actuation, and propulsion. We have observed a number of fundamental effects and are developing new experimental techniques and instruments.


Movement Generation and Control

Welcome to the Movement Generation and Control Group website

What are the algorithmic principles that would allow a robot to run through a rocky terrain, lift a couch while reaching for an object that rolled under it or manipulate a screwdriver while balancing on top of a ladder? By answering these questions, we try to understand the fundamental principles for robot locomotion and manipulation that will endow robots with the robustness and adaptability necessary to efficiently and autonomously act in an unknown and changing environment.


Probabilistic Numerics

The Independent Max Planck Research Group on Probabilistic Numerics

Numerical Problems --- linear algebra and optimization, integration and the solution of differential equations --- are the computational bottleneck of artificial intelligent systems. Intriguingly, the numerical algorithms used for these tasks are also compact little intelligent agents themselves. They estimate unknown / uncomputable quantities by observing the result of feasible computations. They also actively decide which computations to perform.  The Research Group on Probabilistic Numerics studies this philosophical and mathematical connection between computation and inference. We aim to build a theoretical understanding of numerical computer algorithms as agents acting rationally under uncertainty. We analyse existing algorithms from this viewpoint, and propose novel algorithms that provide functionality for key computational ch... Read More


Statistical Learning Theory

Max Planck Fellow Group

We work on the theoretical analysis of machine learning algorithms. Our current focus is on comparison-based learning algorithms and on algorithms on random graphs and networks. The group is lead by Ulrike von Luxburg, the funding comes from a Max Planck Fellowship. The groups by Ulrike von Luxburg are distributed between the Max Planck Institue and the University of Tübingen, our main webpage is the one at the university . The Max Planck branch of our group consists of the following people: Ulrike von Luxburg (Research Group Leader) Michael Perrot (Postdoc) Damien Garreau (Postdoc)


Smart Nanoplasmonics

The nanometer scale is where the chemistry, biology, and materials sciences converge. The optical properties of metal nanoparticles have been an object of fascination since ancient times. When light interacts with a metal nanoparticle (for example a gold colloid in a stained church window), collective oscillations of conduction electrons known as particle plasmons are excited.