Header logo is


2010


no image
Are reaching movements planned in kinematic or dynamic coordinates?

Ellmer, A., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2010), Naples, Florida, 2010, 2010, clmc (inproceedings)

Abstract
Whether human reaching movements are planned and optimized in kinematic (task space) or dynamic (joint or muscle space) coordinates is still an issue of debate. The first hypothesis implies that a planner produces a desired end-effector position at each point in time during the reaching movement, whereas the latter hypothesis includes the dynamics of the muscular-skeletal control system to produce a continuous end-effector trajectory. Previous work by Wolpert et al (1995) showed that when subjects were led to believe that their straight reaching paths corresponded to curved paths as shown on a computer screen, participants adapted the true path of their hand such that they would visually perceive a straight line in visual space, despite that they actually produced a curved path. These results were interpreted as supporting the stance that reaching trajectories are planned in kinematic coordinates. However, this experiment could only demonstrate that adaptation to altered paths, i.e. the position of the end-effector, did occur, but not that the precise timing of end-effector position was equally planned, i.e., the trajectory. Our current experiment aims at filling this gap by explicitly testing whether position over time, i.e. velocity, is a property of reaching movements that is planned in kinematic coordinates. In the current experiment, the velocity profiles of cursor movements corresponding to the participant's hand motions were skewed either to the left or to the right; the path itself was left unaltered. We developed an adaptation paradigm, where the skew of the velocity profile was introduced gradually and participants reported no awareness of any manipulation. Preliminary results indicate that the true hand motion of participants did not alter, i.e. there was no adaptation so as to counterbalance the introduced skew. However, for some participants, peak hand velocities were lowered for higher skews, which suggests that participants interpreted the manipulation as mere noise due to variance in their own movement. In summary, for a visuomotor transformation task, the hypothesis of a planned continuous end-effector trajectory predicts adaptation to a modified velocity profile. The current experiment found no systematic adaptation under such transformation, but did demonstrate an effect that is more in accordance that subjects could not perceive the manipulation and rather interpreted as an increase of noise.

am

[BibTex]

2010


[BibTex]


no image
Absence of element specific ferromagnetism in Co doped ZnO investigated by soft X-ray resonant reflectivity

Goering, E., Brück, S., Tietze, T., Jakob, G., Gacic, M., Adrian, H.

In 200, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Probing the local magnetization dynamics in large systems with spatial inhomogeneity

Li, J, Lee, M.-S., Amaladass, E., He, W., Eimüller, T.

In 200, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Wetting of grain boundaries in Al by the solid Al3Mg2 phase

Straumal, B. B., Baretzky, B., Kogtenkova, O. A., Straumal, A. B., Sidorenko, A. S.

In 45, pages: 2057-2061, Athens, Greek, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Damping of near-adiabatic magnetization dynamics by excitations of electron-hole pairs

Seib, J., Steiauf, D., Fähnle, M.

In 200, Karlsruhe, Germany, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comparison of linear and nonlinear buck converter models with varying compensator gain values for design optimization

Sattler, Michael, Lui, Yusi, Edrington, Chris S

In North American Power Symposium (NAPS), 2010, pages: 1-7, 2010 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Optimality in Neuromuscular Systems

Theodorou, E. A., Valero-Cuevas, F.

In 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, clmc (inproceedings)

Abstract
Abstract? We provide an overview of optimal control meth- ods to nonlinear neuromuscular systems and discuss their lim- itations. Moreover we extend current optimal control methods to their application to neuromuscular models with realistically numerous musculotendons; as most prior work is limited to torque-driven systems. Recent work on computational motor control has explored the used of control theory and esti- mation as a conceptual tool to understand the underlying computational principles of neuromuscular systems. After all, successful biological systems regularly meet conditions for stability, robustness and performance for multiple classes of complex tasks. Among a variety of proposed control theory frameworks to explain this, stochastic optimal control has become a dominant framework to the point of being a standard computational technique to reproduce kinematic trajectories of reaching movements (see [12]) In particular, we demonstrate the application of optimal control to a neuromuscular model of the index finger with all seven musculotendons producing a tapping task. Our simu- lations include 1) a muscle model that includes force- length and force-velocity characteristics; 2) an anatomically plausible biomechanical model of the index finger that includes a tendi- nous network for the extensor mechanism and 3) a contact model that is based on a nonlinear spring-damper attached at the end effector of the index finger. We demonstrate that it is feasible to apply optimal control to systems with realistically large state vectors and conclude that, while optimal control is an adequate formalism to create computational models of neuro- musculoskeletal systems, there remain important challenges and limitations that need to be considered and overcome such as contact transitions, curse of dimensionality, and constraints on states and controls.

am

PDF [BibTex]

PDF [BibTex]


no image
Magnetization reversal of Fe/Gd multilayers on self-assembled arrays of nanospheres

Amaladass, E., Eimüller, T., Ludescher, B., Tyliszczak, T., Schütz, G.

In 200, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Learning Policy Improvements with Path Integrals

Theodorou, E. A., Buchli, J., Schaal, S.

In International Conference on Artificial Intelligence and Statistics (AISTATS 2010), 2010, clmc (inproceedings)

Abstract
With the goal to generate more scalable algo- rithms with higher efficiency and fewer open parameters, reinforcement learning (RL) has recently moved towards combining classi- cal techniques from optimal control and dy- namic programming with modern learning techniques from statistical estimation the- ory. In this vein, this paper suggests the framework of stochastic optimal control with path integrals to derive a novel approach to RL with parametrized policies. While solidly grounded in value function estimation and optimal control based on the stochastic Hamilton-Jacobi-Bellman (HJB) equations, policy improvements can be transformed into an approximation problem of a path inte- gral which has no open parameters other than the exploration noise. The resulting algorithm can be conceived of as model- based, semi-model-based, or even model free, depending on how the learning problem is structured. Our new algorithm demon- strates interesting similarities with previous RL research in the framework of proba- bility matching and provides intuition why the slightly heuristically motivated proba- bility matching approach can actually per- form well. Empirical evaluations demon- strate significant performance improvements over gradient-based policy learning and scal- ability to high-dimensional control problems. We believe that Policy Improvement with Path Integrals (PI2) offers currently one of the most efficient, numerically robust, and easy to implement algorithms for RL based on trajectory roll-outs.

am

PDF [BibTex]

PDF [BibTex]


no image
Learning optimal control solutions: a path integral approach

Theodorou, E., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2010), Naples, Florida, 2010, 2010, clmc (inproceedings)

Abstract
Investigating principles of human motor control in the framework of optimal control has had a long tradition in neural control of movement, and has recently experienced a new surge of investigations. Ideally, optimal control problems are addresses as a reinforcement learning (RL) problem, which would allow to investigate both the process of acquiring an optimal control solution as well as the solution itself. Unfortunately, the applicability of RL to complex neural and biomechanics systems has been largely impossible so far due to the computational difficulties that arise in high dimensional continuous state-action spaces. As a way out, research has focussed on computing optimal control solutions based on iterative optimal control methods that are based on linear and quadratic approximations of dynamical models and cost functions. These methods require perfect knowledge of the dynamics and cost functions while they are based on gradient and Newton optimization schemes. Their applicability is also restricted to low dimensional problems due to problematic convergence in high dimensions. Moreover, the process of computing the optimal solution is removed from the learning process that might be plausible in biology. In this work, we present a new reinforcement learning method for learning optimal control solutions or motor control. This method, based on the framework of stochastic optimal control with path integrals, has a very solid theoretical foundation, while resulting in surprisingly simple learning algorithms. It is also possible to apply this approach without knowledge of the system model, and to use a wide variety of complex nonlinear cost functions for optimization. We illustrate the theoretical properties of this approach and its applicability to learning motor control tasks for reaching movements and locomotion studies. We discuss its applicability to learning desired trajectories, variable stiffness control (co-contraction), and parameterized control policies. We also investigate the applicability to signal dependent noise control systems. We believe that the suggested method offers one of the easiest to use approaches to learning optimal control suggested in the literature so far, which makes it ideally suited for computational investigations of biological motor control.

am

[BibTex]

[BibTex]


no image
Enhancing the performance of Bio-inspired adhesives

Chung, H., Glass, P., Sitti, M., Washburn, N. R.

In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 240, 2010 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Control performance simulation in the design of a flapping wing micro-aerial vehicle

Hines, L. L., Arabagi, V., Sitti, M.

In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages: 1090-1095, 2010 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Contact angles by the solid-phase grain boundary wetting (coverage) in the Co-Cu system

Straumal, B. B., Kogtenkova, O. A., Straumal, A. B., Kuchyeyev, Y. O., Baretzky, B.

In 45, pages: 4271-4275, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unusual super-ductility at room temperature in an ultrafine-grained aluminum alloy

Valiev, R. Z., Murashkin, M. Y., Kilmametov, A., Straumal, B., Chinh, N. Q., Langdon, T.

In 45, pages: 4718-4724, Seattle, WA, USA, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Demagnetization on the fs time-scale by the Elliott-Yafet mechanism

Steiauf, D., Illg, C., Fähnle, M.

In 200, Karlsruhe, Germany, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Constrained Accelerations for Controlled Geometric Reduction: Sagittal-Plane Decoupling for Bipedal Locomotion

Gregg, R., Righetti, L., Buchli, J., Schaal, S.

In 2010 10th IEEE-RAS International Conference on Humanoid Robots, pages: 1-7, IEEE, Nashville, USA, 2010 (inproceedings)

Abstract
Energy-shaping control methods have produced strong theoretical results for asymptotically stable 3D bipedal dynamic walking in the literature. In particular, geometric controlled reduction exploits robot symmetries to control momentum conservation laws that decouple the sagittal-plane dynamics, which are easier to stabilize. However, the associated control laws require high-dimensional matrix inverses multiplied with complicated energy-shaping terms, often making these control theories difficult to apply to highly-redundant humanoid robots. This paper presents a first step towards the application of energy-shaping methods on real robots by casting controlled reduction into a framework of constrained accelerations for inverse dynamics control. By representing momentum conservation laws as constraints in acceleration space, we construct a general expression for desired joint accelerations that render the constraint surface invariant. By appropriately choosing an orthogonal projection, we show that the unconstrained (reduced) dynamics are decoupled from the constrained dynamics. Any acceleration-based controller can then be used to stabilize this planar subsystem, including passivity-based methods. The resulting control law is surprisingly simple and represents a practical way to employ control theoretic stability results in robotic platforms. Simulated walking of a 3D compass-gait biped show correspondence between the new and original controllers, and simulated motions of a 16-DOF humanoid demonstrate the applicability of this method.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Variable impedance control - a reinforcement learning approach

Buchli, J., Theodorou, E., Stulp, F., Schaal, S.

In Robotics Science and Systems (2010), Zaragoza, Spain, June 27-30, 2010, clmc (inproceedings)

Abstract
One of the hallmarks of the performance, versatility, and robustness of biological motor control is the ability to adapt the impedance of the overall biomechanical system to different task requirements and stochastic disturbances. A transfer of this principle to robotics is desirable, for instance to enable robots to work robustly and safely in everyday human environments. It is, however, not trivial to derive variable impedance controllers for practical high DOF robotic tasks. In this contribution, we accomplish such gain scheduling with a reinforcement learning approach algorithm, PI2 (Policy Improvement with Path Integrals). PI2 is a model-free, sampling based learning method derived from first principles of optimal control. The PI2 algorithm requires no tuning of algorithmic parameters besides the exploration noise. The designer can thus fully focus on cost function design to specify the task. From the viewpoint of robotics, a particular useful property of PI2 is that it can scale to problems of many DOFs, so that RL on real robotic systems becomes feasible. We sketch the PI2 algorithm and its theoretical properties, and how it is applied to gain scheduling. We evaluate our approach by presenting results on two different simulated robotic systems, a 3-DOF Phantom Premium Robot and a 6-DOF Kuka Lightweight Robot. We investigate tasks where the optimal strategy requires both tuning of the impedance of the end-effector, and tuning of a reference trajectory. The results show that we can use path integral based RL not only for planning but also to derive variable gain feedback controllers in realistic scenarios. Thus, the power of variable impedance control is made available to a wide variety of robotic systems and practical applications.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Surface tension driven water strider robot using circular footpads

Ozcan, O., Wang, H., Taylor, J. D., Sitti, M.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 3799-3804, 2010 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Inverse dynamics with optimal distribution of ground reaction forces for legged robot

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In Proceedings of the 13th International Conference on Climbing and Walking Robots (CLAWAR), pages: 580-587, Nagoya, Japan, sep 2010 (inproceedings)

Abstract
Contact interaction with the environment is crucial in the design of locomotion controllers for legged robots, to prevent slipping for example. Therefore, it is of great importance to be able to control the effects of the robots movements on the contact reaction forces. In this contribution, we extend a recent inverse dynamics algorithm for floating base robots to optimize the distribution of contact forces while achieving precise trajectory tracking. The resulting controller is algorithmically simple as compared to other approaches. Numerical simulations show that this result significantly increases the range of possible movements of a humanoid robot as compared to the previous inverse dynamics algorithm. We also present a simplification of the result where no inversion of the inertia matrix is needed which is particularly relevant for practical use on a real robot. Such an algorithm becomes interesting for agile locomotion of robots on difficult terrains where the contacts with the environment are critical, such as walking over rough or slippery terrain.

am mg

DOI [BibTex]

DOI [BibTex]


no image
The X-ray microscopy beamline UE46-PGM2 at BESSY

Follath, R., Schmidt, J. S., Weigand, M., Fauth, K.

In 10th International Conference on Synchrotron Radiation Instrumentation, 1234, pages: 323-326, AIP Conference Proceedings, American Institute of Physics, Melbourne, Australia, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]

2004


no image
Attentional Modulation of Auditory Event-Related Potentials in a Brain-Computer Interface

Hill, J., Lal, T., Bierig, K., Birbaumer, N., Schölkopf, B.

In BioCAS04, (S3/5/INV- S3/17-20):4, IEEE Computer Society, Los Alamitos, CA, USA, 2004 IEEE International Workshop on Biomedical Circuits and Systems, December 2004 (inproceedings)

Abstract
Motivated by the particular problems involved in communicating with "locked-in" paralysed patients, we aim to develop a brain-computer interface that uses auditory stimuli. We describe a paradigm that allows a user to make a binary decision by focusing attention on one of two concurrent auditory stimulus sequences. Using Support Vector Machine classification and Recursive Channel Elimination on the independent components of averaged event-related potentials, we show that an untrained user‘s EEG data can be classified with an encouragingly high level of accuracy. This suggests that it is possible for users to modulate EEG signals in a single trial by the conscious direction of attention, well enough to be useful in BCI.

ei

PDF Web DOI [BibTex]

2004


PDF Web DOI [BibTex]


no image
Joint Kernel Maps

Weston, J., Schölkopf, B., Bousquet, O., Mann, .., Noble, W.

(131), Max-Planck-Institute for Biological Cybernetics, Tübingen, November 2004 (techreport)

ei

PDF [BibTex]

PDF [BibTex]


no image
Modelling Spikes with Mixtures of Factor Analysers

Görür, D., Rasmussen, C., Tolias, A., Sinz, F., Logothetis, N.

In Pattern Recognition, pages: 391-398, LNCS 3175, (Editors: Rasmussen, C. E. , H.H. Bülthoff, B. Schölkopf, M.A. Giese), Springer, Berlin, Germany, 26th DAGM Symposium, September 2004 (inproceedings)

Abstract
Identifying the action potentials of individual neurons from extracellular recordings, known as spike sorting, is a challenging problem. We consider the spike sorting problem using a generative model,mixtures of factor analysers, which concurrently performs clustering and feature extraction. The most important advantage of this method is that it quantifies the certainty with which the spikes are classified. This can be used as a means for evaluating the quality of clustering and therefore spike isolation. Using this method, nearly simultaneously occurring spikes can also be modelled which is a hard task for many of the spike sorting methods. Furthermore, modelling the data with a generative model allows us to generate simulated data.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Learning Depth From Stereo

Sinz, F., Candela, J., BakIr, G., Rasmussen, C., Franz, M.

In 26th DAGM Symposium, pages: 245-252, LNCS 3175, (Editors: Rasmussen, C. E., H. H. Bülthoff, B. Schölkopf, M. A. Giese), Springer, Berlin, Germany, 26th DAGM Symposium, September 2004 (inproceedings)

Abstract
We compare two approaches to the problem of estimating the depth of a point in space from observing its image position in two different cameras: 1.~The classical photogrammetric approach explicitly models the two cameras and estimates their intrinsic and extrinsic parameters using a tedious calibration procedure; 2.~A generic machine learning approach where the mapping from image to spatial coordinates is directly approximated by a Gaussian Process regression. Our results show that the generic learning approach, in addition to simplifying the procedure of calibration, can lead to higher depth accuracies than classical calibration although no specific domain knowledge is used.

ei

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]


no image
Semi-Supervised Induction

Yu, K., Tresp, V., Zhou, D.

(141), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, August 2004 (techreport)

Abstract
Considerable progress was recently achieved on semi-supervised learning, which differs from the traditional supervised learning by additionally exploring the information of the unlabelled examples. However, a disadvantage of many existing methods is that it does not generalize to unseen inputs. This paper investigates learning methods that effectively make use of both labelled and unlabelled data to build predictive functions, which are defined on not just the seen inputs but the whole space. As a nice property, the proposed method allows effcient training and can easily handle new test points. We validate the method based on both toy data and real world data sets.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Learning to Find Graph Pre-Images

BakIr, G., Zien, A., Tsuda, K.

In Pattern Recognition, pages: 253-261, (Editors: Rasmussen, C. E., H. H. Bülthoff, B. Schölkopf, M. A. Giese), Springer, Berlin, Germany, 26th DAGM Symposium, August 2004 (inproceedings)

Abstract
The recent development of graph kernel functions has made it possible to apply well-established machine learning methods to graphs. However, to allow for analyses that yield a graph as a result, it is necessary to solve the so-called pre-image problem: to reconstruct a graph from its feature space representation induced by the kernel. Here, we suggest a practical solution to this problem.

ei

PostScript PDF DOI [BibTex]

PostScript PDF DOI [BibTex]


no image
Exponential Families for Conditional Random Fields

Altun, Y., Smola, A., Hofmann, T.

In Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2004), pages: 2-9, (Editors: Chickering, D.M. , J.Y. Halpern), Morgan Kaufmann, San Francisco, CA, USA, 20th Annual Conference on Uncertainty in Artificial Intelligence (UAI), July 2004 (inproceedings)

Abstract
In this paper we define conditional random fields in reproducing kernel Hilbert spaces and show connections to Gaussian Process classification. More specifically, we prove decomposition results for undirected graphical models and we give constructions for kernels. Finally we present efficient means of solving the optimization problem using reduced rank decompositions and we show how stationarity can be exploited efficiently in the optimization process.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Object categorization with SVM: kernels for local features

Eichhorn, J., Chapelle, O.

(137), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2004 (techreport)

Abstract
In this paper, we propose to combine an efficient image representation based on local descriptors with a Support Vector Machine classifier in order to perform object categorization. For this purpose, we apply kernels defined on sets of vectors. After testing different combinations of kernel / local descriptors, we have been able to identify a very performant one.

ei

PDF [BibTex]

PDF [BibTex]


no image
Hilbertian Metrics and Positive Definite Kernels on Probability Measures

Hein, M., Bousquet, O.

(126), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2004 (techreport)

Abstract
We investigate the problem of defining Hilbertian metrics resp. positive definite kernels on probability measures, continuing previous work. This type of kernels has shown very good results in text classification and has a wide range of possible applications. In this paper we extend the two-parameter family of Hilbertian metrics of Topsoe such that it now includes all commonly used Hilbertian metrics on probability measures. This allows us to do model selection among these metrics in an elegant and unified way. Second we investigate further our approach to incorporate similarity information of the probability space into the kernel. The analysis provides a better understanding of these kernels and gives in some cases a more efficient way to compute them. Finally we compare all proposed kernels in two text and one image classification problem.

ei

PDF [BibTex]

PDF [BibTex]


no image
Kernels, Associated Structures and Generalizations

Hein, M., Bousquet, O.

(127), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2004 (techreport)

Abstract
This paper gives a survey of results in the mathematical literature on positive definite kernels and their associated structures. We concentrate on properties which seem potentially relevant for Machine Learning and try to clarify some results that have been misused in the literature. Moreover we consider different lines of generalizations of positive definite kernels. Namely we deal with operator-valued kernels and present the general framework of Hilbertian subspaces of Schwartz which we use to introduce kernels which are distributions. Finally indefinite kernels and their associated reproducing kernel spaces are considered.

ei

PDF [BibTex]

PDF [BibTex]


no image
PAC-Bayesian Generic Chaining

Audibert, J., Bousquet, O.

In Advances in Neural Information Processing Systems 16, pages: 1125-1132 , (Editors: Thrun, S., L.K. Saul, B. Schölkopf), MIT Press, Cambridge, MA, USA, Seventeenth Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
There exist many different generalization error bounds for classification. Each of these bounds contains an improvement over the others for certain situations. Our goal is to combine these different improvements into a single bound. In particular we combine the PAC-Bayes approach introduced by McAllester, which is interesting for averaging classifiers, with the optimal union bound provided by the generic chaining technique developed by Fernique and Talagrand. This combination is quite natural since the generic chaining is based on the notion of majorizing measures, which can be considered as priors on the set of classifiers, and such priors also arise in the PAC-bayesian setting.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Prediction on Spike Data Using Kernel Algorithms

Eichhorn, J., Tolias, A., Zien, A., Kuss, M., Rasmussen, C., Weston, J., Logothetis, N., Schölkopf, B.

In Advances in Neural Information Processing Systems 16, pages: 1367-1374, (Editors: S Thrun and LK Saul and B Schölkopf), MIT Press, Cambridge, MA, USA, 17th Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
We report and compare the performance of different learning algorithms based on data from cortical recordings. The task is to predict the orientation of visual stimuli from the activity of a population of simultaneously recorded neurons. We compare several ways of improving the coding of the input (i.e., the spike data) as well as of the output (i.e., the orientation), and report the results obtained using different kernel algorithms.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Warped Gaussian Processes

Snelson, E., Rasmussen, CE., Ghahramani, Z.

In Advances in Neural Information Processing Systems 16, pages: 337-344, (Editors: Thrun, S., L.K. Saul, B. Schölkopf), MIT Press, Cambridge, MA, USA, Seventeenth Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
We generalise the Gaussian process (GP) framework for regression by learning a nonlinear transformation of the GP outputs. This allows for non-Gaussian processes and non-Gaussian noise. The learning algorithm chooses a nonlinear transformation such that transformed data is well-modelled by a GP. This can be seen as including a preprocessing transformation as an integral part of the probabilistic modelling problem, rather than as an ad-hoc step. We demonstrate on several real regression problems that learning the transformation can lead to significantly better performance than using a regular GP, or a GP with a fixed transformation.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Ranking on Data Manifolds

Zhou, D., Weston, J., Gretton, A., Bousquet, O., Schölkopf, B.

In Advances in neural information processing systems 16, pages: 169-176, (Editors: S Thrun and L Saul and B Schölkopf), MIT Press, Cambridge, MA, USA, 17th Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
The Google search engine has enjoyed a huge success with its web page ranking algorithm, which exploits global, rather than local, hyperlink structure of the web using random walks. Here we propose a simple universal ranking algorithm for data lying in the Euclidean space, such as text or image data. The core idea of our method is to rank the data with respect to the intrinsic manifold structure collectively revealed by a great amount of data. Encouraging experimental results from synthetic, image, and text data illustrate the validity of our method.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Gaussian Processes in Reinforcement Learning

Rasmussen, C., Kuss, M.

In Advances in Neural Information Processing Systems 16, pages: 751-759, (Editors: Thrun, S., L. K. Saul, B. Schölkopf), MIT Press, Cambridge, MA, USA, Seventeenth Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
We exploit some useful properties of Gaussian process (GP) regression models for reinforcement learning in continuous state spaces and discrete time. We demonstrate how the GP model allows evaluation of the value function in closed form. The resulting policy iteration algorithm is demonstrated on a simple problem with a two dimensional state space. Further, we speculate that the intrinsic ability of GP models to characterise distributions of functions would allow the method to capture entire distributions over future values instead of merely their expectation, which has traditionally been the focus of much of reinforcement learning.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning with Local and Global Consistency

Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.

In Advances in Neural Information Processing Systems 16, pages: 321-328, (Editors: S Thrun and LK Saul and B Schölkopf), MIT Press, Cambridge, MA, USA, 17th Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning to Find Pre-Images

Bakir, G., Weston, J., Schölkopf, B.

In Advances in Neural Information Processing Systems 16, pages: 449-456, (Editors: S Thrun and LK Saul and B Schölkopf), MIT Press, Cambridge, MA, USA, 17th Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
We consider the problem of reconstructing patterns from a feature map. Learning algorithms using kernels to operate in a reproducing kernel Hilbert space (RKHS) express their solutions in terms of input points mapped into the RKHS. We introduce a technique based on kernel principal component analysis and regression to reconstruct corresponding patterns in the input space (aka pre-images) and review its performance in several applications requiring the construction of pre-images. The introduced technique avoids difficult and/or unstable numerical optimization, is easy to implement and, unlike previous methods, permits the computation of pre-images in discrete input spaces.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Measure Based Regularization

Bousquet, O., Chapelle, O., Hein, M.

In Advances in Neural Information Processing Systems 16, pages: 1221-1228, (Editors: Thrun, S., L. Saul, B. Schölkopf), MIT Press, Cambridge, MA, USA, Seventeenth Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
We address in this paper the question of how the knowledge of the marginal distribution $P(x)$ can be incorporated in a learning algorithm. We suggest three theoretical methods for taking into account this distribution for regularization and provide links to existing graph-based semi-supervised learning algorithms. We also propose practical implementations.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Insights from Machine Learning Applied to Human Visual Classification

Graf, A., Wichmann, F.

In Advances in Neural Information Processing Systems 16, pages: 905-912, (Editors: Thrun, S., L. Saul, B. Schölkopf), MIT Press, Cambridge, MA, USA, Seventeenth Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
We attempt to understand visual classification in humans using both psychophysical and machine learning techniques. Frontal views of human faces were used for a gender classification task. Human subjects classified the faces and their gender judgment, reaction time and confidence rating were recorded. Several hyperplane learning algorithms were used on the same classification task using the Principal Components of the texture and flowfield representation of the faces. The classification performance of the learning algorithms was estimated using the face database with the true gender of the faces as labels, and also with the gender estimated by the subjects. We then correlated the human responses to the distance of the stimuli to the separating hyperplane of the learning algorithms. Our results suggest that human classification can be modeled by some hyperplane algorithms in the feature space we used. For classification, the brain needs more processing for stimuli close to that hyperplane than for those further away.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Image Construction by Linear Programming

Tsuda, K., Rätsch, G.

In Advances in Neural Information Processing Systems 16, pages: 57-64, (Editors: Thrun, S., L.K. Saul, B. Schölkopf), MIT Press, Cambridge, MA, USA, Seventeenth Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
A common way of image denoising is to project a noisy image to the subspace of admissible images made for instance by PCA. However, a major drawback of this method is that all pixels are updated by the projection, even when only a few pixels are corrupted by noise or occlusion. We propose a new method to identify the noisy pixels by 1-norm penalization and update the identified pixels only. The identification and updating of noisy pixels are formulated as one linear program which can be solved efficiently. Especially, one can apply the ν-trick to directly specify the fraction of pixels to be reconstructed. Moreover, we extend the linear program to be able to exploit prior knowledge that occlusions often appear in contiguous blocks (e.g. sunglasses on faces). The basic idea is to penalize boundary points and interior points of the occluded area differently. We are able to show the ν-property also for this extended LP leading a method which is easy to use. Experimental results impressively demonstrate the power of our approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Semi-Supervised Protein Classification using Cluster Kernels

Weston, J., Leslie, C., Zhou, D., Elisseeff, A., Noble, W.

In Advances in Neural Information Processing Systems 16, pages: 595-602, (Editors: Thrun, S., L.K. Saul, B. Schölkopf), MIT Press, Cambridge, MA, USA, Seventeenth Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (inproceedings)

Abstract
A key issue in supervised protein classification is the representation of input sequences of amino acids. Recent work using string kernels for protein data has achieved state-of-the-art classification performance. However, such representations are based only on labeled data --- examples with known 3D structures, organized into structural classes --- while in practice, unlabeled data is far more plentiful. In this work, we develop simple and scalable cluster kernel techniques for incorporating unlabeled data into the representation of protein sequences. We show that our methods greatly improve the classification performance of string kernels and outperform standard approaches for using unlabeled data, such as adding close homologs of the positive examples to the training data. We achieve equal or superior performance to previously presented cluster kernel methods while achieving far greater computational efficiency.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel Hebbian Algorithm for single-frame super-resolution

Kim, K., Franz, M., Schölkopf, B.

In Computer Vision - ECCV 2004, LNCS vol. 3024, pages: 135-149, (Editors: A Leonardis and H Bischof), Springer, Berlin, Germany, 8th European Conference on Computer Vision (ECCV), May 2004 (inproceedings)

Abstract
This paper presents a method for single-frame image super-resolution using an unsupervised learning technique. The required prior knowledge about the high-resolution images is obtained from Kernel Principal Component Analysis (KPCA). The original form of KPCA, however, can be only applied to strongly restricted image classes due to the limited number of training examples that can be processed. We therefore propose a new iterative method for performing KPCA, the {em Kernel Hebbian Algorithm}. By kernelizing the Generalized Hebbian Algorithm, one can iteratively estimate the Kernel Principal Components with only linear order memory complexity. The resulting super-resolution algorithm shows a comparable performance to the existing supervised methods on images containing faces and natural scenes.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kamerakalibrierung und Tiefenschätzung: Ein Vergleich von klassischer Bündelblockausgleichung und statistischen Lernalgorithmen

Sinz, FH.

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Tübingen, Germany, March 2004 (techreport)

Abstract
Die Arbeit verleicht zwei Herangehensweisen an das Problem der Sch{\"a}tzung der r{\"a}umliche Position eines Punktes aus den Bildkoordinaten in zwei verschiedenen Kameras. Die klassische Methode der B{\"u}ndelblockausgleichung modelliert zwei Einzelkameras und sch{\"a}tzt deren {\"a}ußere und innere Orientierung mit einer iterativen Kalibrationsmethode, deren Konvergenz sehr stark von guten Startwerten abh{\"a}ngt. Die Tiefensch{\"a}tzung eines Punkts geschieht durch die Invertierung von drei der insgesamt vier Projektionsgleichungen der Einzalkameramodelle. Die zweite Methode benutzt Kernel Ridge Regression und Support Vector Regression, um direkt eine Abbildung von den Bild- auf die Raumkoordinaten zu lernen. Die Resultate zeigen, daß der Ansatz mit maschinellem Lernen, neben einer erheblichen Vereinfachung des Kalibrationsprozesses, zu h{\"o}heren Positionsgenaugikeiten f{\"u}hren kann.

ei

PDF [BibTex]

PDF [BibTex]


no image
Unifying Colloborative and Content-Based Filtering.

Basilico, J., Hofmann, T.

In ACM International Conference Proceeding Series, pages: 65 , (Editors: Greiner, R. , D. Schuurmans), ACM Press, New York, USA, ICLM, 2004 (inproceedings)

Abstract
Collaborative and content-based filtering are two paradigms that have been applied in the context of recommender systems and user preference prediction. This paper proposes a novel, unified approach that systematically integrates all available training information such as past user-item ratings as well as attributes of items or users to learn a prediction function. The key ingredient of our method is the design of a suitable kernel or similarity function between user-item pairs that allows simultaneous generalization across the user and item dimensions. We propose an on-line algorithm (JRank) that generalizes perceptron learning. Experimental results on the EachMovie data set show significant improvements over standard approaches.

ei

PDF [BibTex]

PDF [BibTex]


no image
Clustering Protein Sequence and Structure Space with Infinite Gaussian Mixture Models

Dubey, A., Hwang, S., Rangel, C., Rasmussen, CE., Ghahramani, Z., Wild, DL.

In Pacific Symposium on Biocomputing 2004; Vol. 9, pages: 399-410, World Scientific Publishing, Singapore, Pacific Symposium on Biocomputing, 2004 (inproceedings)

Abstract
We describe a novel approach to the problem of automatically clustering protein sequences and discovering protein families, subfamilies etc., based on the thoery of infinite Gaussian mixture models. This method allows the data itself to dictate how many mixture components are required to model it, and provides a measure of the probability that two proteins belong to the same cluster. We illustrate our methods with application to three data sets: globin sequences, globin sequences with known tree-dimensional structures and G-pretein coupled receptor sequences. The consistency of the clusters indicate that that our methods is producing biologically meaningful results, which provide a very good indication of the underlying families and subfamilies. With the inclusion of secondary structure and residue solvent accessibility information, we obtain a classification of sequences of known structure which reflects and extends their SCOP classifications. A supplementary web site containing larger versions of the figures is available at http://public.kgi.edu/~wild/PSB04

ei

PDF [BibTex]

PDF [BibTex]


no image
Efficient Approximations for Support Vector Machines in Object Detection

Kienzle, W., BakIr, G., Franz, M., Schölkopf, B.

In DAGM 2004, pages: 54-61, (Editors: CE Rasmussen and HH Bülthoff and B Schölkopf and MA Giese), Springer, Berlin, Germany, Pattern Recognition, Proceedings of the 26th DAGM Symposium, 2004 (inproceedings)

Abstract
We present a new approximation scheme for support vector decision functions in object detection. In the present approach we are building on an existing algorithm where the set of support vectors is replaced by a smaller so-called reduced set of synthetic points. Instead of finding the reduced set via unconstrained optimization, we impose a structural constraint on the synthetic vectors such that the resulting approximation can be evaluated via separable filters. Applications that require scanning an entire image can benefit from this representation: when using separable filters, the average computational complexity for evaluating a reduced set vector on a test patch of size (h x w) drops from O(hw) to O(h+w). We show experimental results on handwritten digits and face detection.

ei

PDF [BibTex]

PDF [BibTex]


no image
Kernel Methods for Manifold Estimation

Schölkopf, B.

In Proceedings in Computational Statistics, pages: 441-452, (Editors: J Antoch), Physica-Verlag/Springer, Heidelberg, Germany, COMPSTAT, 2004 (inproceedings)

ei

[BibTex]

[BibTex]


no image
A Regularization Framework for Learningfrom Graph Data

Zhou, D., Schölkopf, B.

In ICML Workshop on Statistical Relational Learning and Its Connections to Other Fields, pages: 132-137, ICML, 2004 (inproceedings)

Abstract
The data in many real-world problems can be thought of as a graph, such as the web, co-author networks, and biological networks. We propose a general regularization framework on graphs, which is applicable to the classification, ranking, and link prediction problems. We also show that the method can be explained as lazy random walks. We evaluate the method on a number of experiments.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Multivariate Regression with Stiefel Constraints

Bakir, G., Gretton, A., Franz, M., Schölkopf, B.

(128), MPI for Biological Cybernetics, Spemannstr 38, 72076, Tuebingen, 2004 (techreport)

Abstract
We introduce a new framework for regression between multi-dimensional spaces. Standard methods for solving this problem typically reduce the problem to one-dimensional regression by choosing features in the input and/or output spaces. These methods, which include PLS (partial least squares), KDE (kernel dependency estimation), and PCR (principal component regression), select features based on different a-priori judgments as to their relevance. Moreover, loss function and constraints are chosen not primarily on statistical grounds, but to simplify the resulting optimisation. By contrast, in our approach the feature construction and the regression estimation are performed jointly, directly minimizing a loss function that we specify, subject to a rank constraint. A major advantage of this approach is that the loss is no longer chosen according to the algorithmic requirements, but can be tailored to the characteristics of the task at hand; the features will then be optimal with respect to this objective. Our approach also allows for the possibility of using a regularizer in the optimization. Finally, by processing the observations sequentially, our algorithm is able to work on large scale problems.

ei

PDF [BibTex]

PDF [BibTex]


no image
A kernel view of the dimensionality reduction of manifolds

Ham, J., Lee, D., Mika, S., Schölkopf, B.

In Proceedings of the Twenty-First International Conference on Machine Learning, pages: 369-376, (Editors: CE Brodley), ACM, New York, NY, USA, ICML, 2004, also appeared as MPI-TR 110 (inproceedings)

Abstract
We interpret several well-known algorithms for dimensionality reduction of manifolds as kernel methods. Isomap, graph Laplacian eigenmap, and locally linear embedding (LLE) all utilize local neighborhood information to construct a global embedding of the manifold. We show how all three algorithms can be described as kernel PCA on specially constructed Gram matrices, and illustrate the similarities and differences between the algorithms with representative examples.

ei

PDF [BibTex]

PDF [BibTex]