Header logo is


2012


no image
Effect of retraction speed on adhesion of elastomer fibrillar structures

Abusomwan, U., Sitti, M.

Applied Physics Letters, 101(21):211907, AIP, 2012 (article)

pi

Project Page [BibTex]

2012


Project Page [BibTex]


no image
Die Stabilität des stromtragenden Zustands in MgB2 Schichten mit modifizierter Mikrostruktur

Treiber, S.

Universität Stuttgart, Stuttgart, 2012 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Accelerated diffusion and phase transformations in Co-Cu alloys driven by the severe plastic deformation

Straumal, B. B., Mazilkin, A. A., Baretzky, B., Schütz, G., Rabkin, E., Valiev, R. Z.

{Special Issue on Advanced Materials Science in Bulk Nanostructured Metals}, 53(1):63-71, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unusual flux jumps above 12 K in non-homogeneous MgB2 thin films

Treiber, S., Stahl, C., Schütz, G., Albrecht, J.

{Superconductor Science \& Technology}, 25, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ferromagnetism of nanostructured zinc oxide films

Straumal, B. B., Mazilkin, A. A., Protasova, S. G., Straumal, P. B., Myatiev, A. A., Schütz, G., Goering, E., Baretzky, B.

{The Physics of Metals and Metallography}, 113(13):1244-1256, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Frequencies and polarization vectors of phonons: Results from force constants which are fitted to experimental data or calculated ab initio

Illg, C., Meyer, B., Fähnle, M.

{Physical Review B}, 86(17), Published by the American Physical Society through the American Institute of Physics, Woodbury, NY, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Grain boundary wetting by a second solid phase in the Zr-Nb alloys

Straumal, B. B., Gornakova, A. S., Kucheev, Y. O., Baretzky, B., Nekrasov, A. N.

{Journal of Materials Engineering and Performance}, 21(5):721-724, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Grain boundary wetting in the NdFeB-based hard magnetic alloys

Straumal, B. B., Kucheev, Y. O., Yatskovskaya, I. L., Mogilnikova, I. V., Schütz, G., Nekrasov, A. N., Baretzky, B.

{Journal of Materials Science}, 47(24):8352-8359, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


Thumb xl cvprlayers12crop
Layered segmentation and optical flow estimation over time

Sun, D., Sudderth, E., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 1768-1775, IEEE, 2012 (inproceedings)

Abstract
Layered models provide a compelling approach for estimating image motion and segmenting moving scenes. Previous methods, however, have failed to capture the structure of complex scenes, provide precise object boundaries, effectively estimate the number of layers in a scene, or robustly determine the depth order of the layers. Furthermore, previous methods have focused on optical flow between pairs of frames rather than longer sequences. We show that image sequences with more frames are needed to resolve ambiguities in depth ordering at occlusion boundaries; temporal layer constancy makes this feasible. Our generative model of image sequences is rich but difficult to optimize with traditional gradient descent methods. We propose a novel discrete approximation of the continuous objective in terms of a sequence of depth-ordered MRFs and extend graph-cut optimization methods with new “moves” that make joint layer segmentation and motion estimation feasible. Our optimizer, which mixes discrete and continuous optimization, automatically determines the number of layers and reasons about their depth ordering. We demonstrate the value of layered models, our optimization strategy, and the use of more than two frames on both the Middlebury optical flow benchmark and the MIT layer segmentation benchmark.

ps

pdf sup mat poster Project Page Project Page [BibTex]

pdf sup mat poster Project Page Project Page [BibTex]


no image
Towards Associative Skill Memories

Pastor, P., Kalakrishnan, M., Righetti, L., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 309-315, IEEE, Osaka, Japan, November 2012 (inproceedings)

Abstract
Movement primitives as basis of movement planning and control have become a popular topic in recent years. The key idea of movement primitives is that a rather small set of stereotypical movements should suffice to create a large set of complex manipulation skills. An interesting side effect of stereotypical movement is that it also creates stereotypical sensory events, e.g., in terms of kinesthetic variables, haptic variables, or, if processed appropriately, visual variables. Thus, a movement primitive executed towards a particular object in the environment will associate a large number of sensory variables that are typical for this manipulation skill. These association can be used to increase robustness towards perturbations, and they also allow failure detection and switching towards other behaviors. We call such movement primitives augmented with sensory associations Associative Skill Memories (ASM). This paper addresses how ASMs can be acquired by imitation learning and how they can create robust manipulation skill by determining subsequent ASMs online to achieve a particular manipulation goal. Evaluation for grasping and manipulation with a Barrett WAM/Hand illustrate our approach.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Template-based learning of grasp selection

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Asfour, T., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 2379-2384, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
The ability to grasp unknown objects is an important skill for personal robots, which has been addressed by many present and past research projects, but still remains an open problem. A crucial aspect of grasping is choosing an appropriate grasp configuration, i.e. the 6d pose of the hand relative to the object and its finger configuration. Finding feasible grasp configurations for novel objects, however, is challenging because of the huge variety in shape and size of these objects. Moreover, possible configurations also depend on the specific kinematics of the robotic arm and hand in use. In this paper, we introduce a new grasp selection algorithm able to find object grasp poses based on previously demonstrated grasps. Assuming that objects with similar shapes can be grasped in a similar way, we associate to each demonstrated grasp a grasp template. The template is a local shape descriptor for a possible grasp pose and is constructed using 3d information from depth sensors. For each new object to grasp, the algorithm then finds the best grasp candidate in the library of templates. The grasp selection is also able to improve over time using the information of previous grasp attempts to adapt the ranking of the templates. We tested the algorithm on two different platforms, the Willow Garage PR2 and the Barrett WAM arm which have very different hands. Our results show that the algorithm is able to find good grasp configurations for a large set of objects from a relatively small set of demonstrations, and does indeed improve its performance over time.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation

Stulp, F., Theodorou, E., Schaal, S.

IEEE Transactions on Robotics, 2012 (article)

am

[BibTex]

[BibTex]


no image
Impact and Surface Tension in Water: a Study of Landing Bodies

Shih, B., Laham, L., Lee, K. J., Krasnoff, N., Diller, E., Sitti, M.

Bio-inspired Robotics Final Project, Carnegie Mellon University, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Design and rolling locomotion of a magnetically actuated soft capsule endoscope

Yim, S., Sitti, M.

IEEE Transactions on Robotics, 28(1):183-194, IEEE, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Design and manufacturing of a controllable miniature flapping wing robotic platform

Arabagi, V., Hines, L., Sitti, M.

The International Journal of Robotics Research, 31(6):785-800, SAGE Publications Sage UK: London, England, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Chemotactic steering of bacteria propelled microbeads

Kim, D., Liu, A., Diller, E., Sitti, M.

Biomedical microdevices, 14(6):1009-1017, Springer US, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Probabilistic depth image registration incorporating nonvisual information

Wüthrich, M., Pastor, P., Righetti, L., Billard, A., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 3637-3644, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
In this paper, we derive a probabilistic registration algorithm for object modeling and tracking. In many robotics applications, such as manipulation tasks, nonvisual information about the movement of the object is available, which we will combine with the visual information. Furthermore we do not only consider observations of the object, but we also take space into account which has been observed to not be part of the object. Furthermore we are computing a posterior distribution over the relative alignment and not a point estimate as typically done in for example Iterative Closest Point (ICP). To our knowledge no existing algorithm meets these three conditions and we thus derive a novel registration algorithm in a Bayesian framework. Experimental results suggest that the proposed methods perform favorably in comparison to PCL [1] implementations of feature mapping and ICP, especially if nonvisual information is available.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Hartmagnetische L10-FePt basierte gro\ssflächige Nanomuster mittels Nanoimprint-Lithografie

Bublat, T.

Universität Stuttgart, Stuttgart, 2012 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Magnetic proximity effect in YBa2Cu3O7 / La2/3Ca1/3MnO3 and YBa2Cu3O7 / LaMnO3+δsuperlattices

Satapathy, D. K., Uribe-Laverde, M. A., Marozau, I., Malik, V. K., Das, S., Wagner, T., Marcelot, C., Stahn, J., Brück, S., Rühm, A., Macke, S., Tietze, T., Goering, E., Frañó, A., Kim, J., Wu, M., Benckiser, E., Keimer, B., Devishvili, A., Toperverg, B. P., Merz, M., Nagel, P., Schuppler, S., Bernhard, C.

{Physical Review Letters}, 108, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Structural and chemical characterization on the nanoscale

Stierle, A., Carstanjen, H.-D., Hofmann, S.

In Nanoelectronics and Information Technology. Advanced Electronic Materials and Novel Devices, pages: 233-254, Wiley-VCH, Weinheim, 2012 (incollection)

mms

[BibTex]

[BibTex]


no image
Noble gases and microporous frameworks; from interaction to application

Soleimani Dorcheh, A., Denysenko, D., Volkmer, D., Donner, W., Hirscher, M.

{Microporous and Mesoporous Materials}, 162, pages: 64-68, Elsevier, Amsterdam, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Note: Unique characterization possibilities in the ultra high vacuum scanning transmission x-ray microscope (UHV-STXM) "MAXYMUS" using a rotatable permanent magnetic field up to 0.22 T

Nolle, D., Weigand, M., Audehm, P., Goering, E., Wiesemann, U., Wolter, C., Nolle, E., Schütz, G.

{Review of Scientific Instruments}, 83(4), 2012 (article)

mms

DOI [BibTex]


no image
Rutherford Backscattering

Carstanjen, H. D.

In Nanoelectronics and Information Technology. Advanced Electronic Materials and Novel Devices, pages: 250-252, WILEY-VCH Verlag, Weinheim, Germany, 2012 (incollection)

mms

[BibTex]

[BibTex]


no image
Microstructure and superconducting properties of MgB2 films prepared by solid state reaction of multilayer precursors of the elements

Kugler, B., Stahl, C., Treiber, S., Soltan, S., Haug, S., Schütz, G., Albrecht, J.

{Thin Solid Films}, 520, pages: 6985-6988, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


Thumb xl bookcdc4cv
Consumer Depth Cameras for Computer Vision - Research Topics and Applications

Fossati, A., Gall, J., Grabner, H., Ren, X., Konolige, K.

Advances in Computer Vision and Pattern Recognition, Springer, 2012 (book)

ps

workshop publisher's site [BibTex]

workshop publisher's site [BibTex]


Thumb xl amdo2012v2
Spatial Measures between Human Poses for Classification and Understanding

Soren Hauberg, Kim S. Pedersen

In Articulated Motion and Deformable Objects, 7378, pages: 26-36, LNCS, (Editors: Perales, Francisco J. and Fisher, Robert B. and Moeslund, Thomas B.), Springer Berlin Heidelberg, 2012 (inproceedings)

ps

Publishers site Project Page [BibTex]

Publishers site Project Page [BibTex]


Thumb xl nips teaser
A Geometric Take on Metric Learning

Hauberg, S., Freifeld, O., Black, M. J.

In Advances in Neural Information Processing Systems (NIPS) 25, pages: 2033-2041, (Editors: P. Bartlett and F.C.N. Pereira and C.J.C. Burges and L. Bottou and K.Q. Weinberger), MIT Press, 2012 (inproceedings)

Abstract
Multi-metric learning techniques learn local metric tensors in different parts of a feature space. With such an approach, even simple classifiers can be competitive with the state-of-the-art because the distance measure locally adapts to the structure of the data. The learned distance measure is, however, non-metric, which has prevented multi-metric learning from generalizing to tasks such as dimensionality reduction and regression in a principled way. We prove that, with appropriate changes, multi-metric learning corresponds to learning the structure of a Riemannian manifold. We then show that this structure gives us a principled way to perform dimensionality reduction and regression according to the learned metrics. Algorithmically, we provide the first practical algorithm for computing geodesics according to the learned metrics, as well as algorithms for computing exponential and logarithmic maps on the Riemannian manifold. Together, these tools let many Euclidean algorithms take advantage of multi-metric learning. We illustrate the approach on regression and dimensionality reduction tasks that involve predicting measurements of the human body from shape data.

ps

PDF Youtube Suppl. material Poster Project Page [BibTex]

PDF Youtube Suppl. material Poster Project Page [BibTex]

2007


no image
Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism

Saigo, H., Hattori, M., Tsuda, K.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Secondary metabolic pathway in plant is important for finding druggable candidate enzymes. However, there are many enzymes whose functions are still undiscovered especially in organism-specific metabolic pathways. We propose reaction graph kernels for automatically assigning the EC numbers to unknown enzymatic reactions in a metabolic network. Experiments are carried out on KEGG/REACTION database and our method successfully predicted the first three digits of the EC number with 83% accuracy.We also exhaustively predicted missing enzymatic functions in the plant secondary metabolism pathways, and evaluated our results in biochemical validity.

ei

Web [BibTex]

2007


Web [BibTex]


no image
Positional Oligomer Importance Matrices

Sonnenburg, S., Zien, A., Philips, P., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
At the heart of many important bioinformatics problems, such as gene finding and function prediction, is the classification of biological sequences, above all of DNA and proteins. In many cases, the most accurate classifiers are obtained by training SVMs with complex sequence kernels, for instance for transcription starts or splice sites. However, an often criticized downside of SVMs with complex kernels is that it is very hard for humans to understand the learned decision rules and to derive biological insights from them. To close this gap, we introduce the concept of positional oligomer importance matrices (POIMs) and develop an efficient algorithm for their computation. We demonstrate how they overcome the limitations of sequence logos, and how they can be used to find relevant motifs for different biological phenomena in a straight-forward way. Note that the concept of POIMs is not limited to interpreting SVMs, but is applicable to general k−mer based scoring systems.

ei

Web [BibTex]

Web [BibTex]


no image
Machine Learning Algorithms for Polymorphism Detection

Schweikert, G., Zeller, G., Weigel, D., Schölkopf, B., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
A Tutorial on Spectral Clustering

von Luxburg, U.

Statistics and Computing, 17(4):395-416, December 2007 (article)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
An Automated Combination of Kernels for Predicting Protein Subcellular Localization

Zien, A., Ong, C.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions.We propose a new class of protein sequence kernels which considers all motifs including motifs with gaps. This class of kernels allows the inclusion of pairwise amino acid distances into their computation. We utilize an extension of the multiclass support vector machine (SVM)method which directly solves protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. To automatically search over families of possible amino acid motifs, we optimize over multiple kernels at the same time. We compare our automated approach to four other predictors on three different datasets, and show that we perform better than the current state of the art. Furthermore, our method provides some insights as to which features are most useful for determining subcellular localization, which are in agreement with biological reasoning.

ei

Web [BibTex]

Web [BibTex]


no image
A Tutorial on Kernel Methods for Categorization

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 51(6):343-358, December 2007 (article)

Abstract
The abilities to learn and to categorize are fundamental for cognitive systems, be it animals or machines, and therefore have attracted attention from engineers and psychologists alike. Modern machine learning methods and psychological models of categorization are remarkably similar, partly because these two fields share a common history in artificial neural networks and reinforcement learning. However, machine learning is now an independent and mature field that has moved beyond psychologically or neurally inspired algorithms towards providing foundations for a theory of learning that is rooted in statistics and functional analysis. Much of this research is potentially interesting for psychological theories of learning and categorization but also hardly accessible for psychologists. Here, we provide a tutorial introduction to a popular class of machine learning tools, called kernel methods. These methods are closely related to perceptrons, radial-basis-function neural networks and exemplar theories of catego rization. Recent theoretical advances in machine learning are closely tied to the idea that the similarity of patterns can be encapsulated in a positive definite kernel. Such a positive definite kernel can define a reproducing kernel Hilbert space which allows one to use powerful tools from functional analysis for the analysis of learning algorithms. We give basic explanations of some key concepts—the so-called kernel trick, the representer theorem and regularization—which may open up the possibility that insights from machine learning can feed back into psychology.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Accurate Splice site Prediction Using Support Vector Machines

Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.

BMC Bioinformatics, 8(Supplement 10):1-16, December 2007 (article)

Abstract
Background: For splice site recognition, one has to solve two classification problems: discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems typically rely on Markov Chains to solve these tasks. Results: In this work we consider Support Vector Machines for splice site recognition. We employ the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in several experiments where we compare its prediction accuracy with that of recently proposed systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our performance estimates indicate that splice sites can be recognized very accurately in these genomes and that our method outperforms many other methods including Markov Chains, GeneSplicer and SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction tool ready to be used for incorporation in a gene finder. Availability: Data, splits, additional information on the model selection, the whole genome predictions, as well as the stand-alone prediction tool are available for download at http:// www.fml.mpg.de/raetsch/projects/splice.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Challenges in Brain-Computer Interface Development: Induction, Measurement, Decoding, Integration

Hill, NJ.

Invited keynote talk at the launch of BrainGain, the Dutch BCI research consortium, November 2007 (talk)

Abstract
I‘ll present a perspective on Brain-Computer Interface development from T{\"u}bingen. Some of the benefits promised by BCI technology lie in the near foreseeable future, and some further away. Our motivation is to make BCI technology feasible for the people who could benefit from what it has to offer soon: namely, people in the "completely locked-in" state. I‘ll mention some of the challenges of working with this user group, and explain the specific directions they have motivated us to take in developing experimental methods, algorithms, and software.

ei

[BibTex]

[BibTex]


no image
Towards compliant humanoids: an experimental assessment of suitable task space position/orientation controllers

Nakanishi, J., Mistry, M., Peters, J., Schaal, S.

In IROS 2007, 2007, pages: 2520-2527, (Editors: Grant, E. , T. C. Henderson), IEEE Service Center, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems, November 2007 (inproceedings)

Abstract
Compliant control will be a prerequisite for humanoid robotics if these robots are supposed to work safely and robustly in human and/or dynamic environments. One view of compliant control is that a robot should control a minimal number of degrees-of-freedom (DOFs) directly, i.e., those relevant DOFs for the task, and keep the remaining DOFs maximally compliant, usually in the null space of the task. This view naturally leads to task space control. However, surprisingly few implementations of task space control can be found in actual humanoid robots. This paper makes a first step towards assessing the usefulness of task space controllers for humanoids by investigating which choices of controllers are available and what inherent control characteristics they have—this treatment will concern position and orientation control, where the latter is based on a quaternion formulation. Empirical evaluations on an anthropomorphic Sarcos master arm illustrate the robustness of the different controllers as well as the eas e of implementing and tuning them. Our extensive empirical results demonstrate that simpler task space controllers, e.g., classical resolved motion rate control or resolved acceleration control can be quite advantageous in face of inevitable modeling errors in model-based control, and that well chosen formulations are easy to implement and quite robust, such that they are useful for humanoids.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
MR-Based PET Attenuation Correction: Method and Validation

Hofmann, M., Steinke, F., Scheel, V., Charpiat, G., Brady, M., Schölkopf, B., Pichler, B.

2007 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC 2007), 2007(M16-6):1-2, November 2007 (poster)

Abstract
PET/MR combines the high soft tissue contrast of Magnetic Resonance Imaging (MRI) and the functional information of Positron Emission Tomography (PET). For quantitative PET information, correction of tissue photon attenuation is mandatory. Usually in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating source, or from the CT scan in case of combined PET/CT. In the case of a PET/MR scanner, there is insufficient space for the rotating source and ideally one would want to calculate the attenuation map from the MR image instead. Since MR images provide information about proton density of the different tissue types, it is not trivial to use this data for PET attenuation correction. We present a method for predicting the PET attenuation map from a given the MR image, using a combination of atlas-registration and recognition of local patterns. Using "leave one out cross validation" we show on a database of 16 MR-CT image pairs that our method reliably allows estimating the CT image from the MR image. Subsequently, as in PET/CT, the PET attenuation map can be predicted from the CT image. On an additional dataset of MR/CT/PET triplets we quantitatively validate that our approach allows PET quantification with an error that is smaller than what would be clinically significant. We demonstrate our approach on T1-weighted human brain scans. However, the presented methods are more general and current research focuses on applying the established methods to human whole body PET/MRI applications.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Estimating receptive fields without spike-triggering

Macke, J., Zeck, G., Bethge, M.

37th annual Meeting of the Society for Neuroscience (Neuroscience 2007), 37(768.1):1, November 2007 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Evaluation of Deformable Registration Methods for MR-CT Atlas Alignment

Scheel, V., Hofmann, M., Rehfeld, N., Judenhofer, M., Claussen, C., Pichler, B.

2007 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC 2007), 2007(M13-121):1, November 2007 (poster)

Abstract
Deformable registration methods are essential for multimodality imaging. Many different methods exist but due to the complexity of the deformed images a direct comparison of the methods is difficult. One particular application that requires high accuracy registration of MR-CT images is atlas-based attenuation correction for PET/MR. We compare four deformable registration algorithms for 3D image data included in the Open Source "National Library of Medicine Insight Segmentation and Registration Toolkit" (ITK). An interactive landmark based registration using MiraView (Siemens) has been used as gold standard. The automatic algorithms provided by ITK are based on the metrics Mattes mutual information as well as on normalized mutual information. The transformations are calculated by interpolating over a uniform B-Spline grid laying over the image to be warped. The algorithms were tested on head images from 10 subjects. We implemented a measure which segments head interior bone and air based on the CT images and l ow intensity classes of corresponding MRI images. The segmentation of bone is performed by individually calculating the lowest Hounsfield unit threshold for each CT image. The compromise is made by quantifying the number of overlapping voxels of the remaining structures. We show that the algorithms provided by ITK achieve similar or better accuracy than the time-consuming interactive landmark based registration. Thus, ITK provides an ideal platform to generate accurately fused datasets from different modalities, required for example for building training datasets for Atlas-based attenuation correction.

ei

PDF [BibTex]

PDF [BibTex]


no image
Some Theoretical Aspects of Human Categorization Behavior: Similarity and Generalization

Jäkel, F.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007, passed with "ausgezeichnet", summa cum laude, published online (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Statistical Learning Theory Approaches to Clustering

Jegelka, S.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Performance Stabilization and Improvement in Graph-based Semi-supervised Learning with Ensemble Method and Graph Sharpening

Choi, I., Shin, H.

In Korean Data Mining Society Conference, pages: 257-262, Korean Data Mining Society, Seoul, Korea, Korean Data Mining Society Conference, November 2007 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
A time/frequency decomposition of information transmission by LFPs and spikes in the primary visual cortex

Belitski, A., Gretton, A., Magri, C., Murayama, Y., Montemurro, M., Logothetis, N., Panzeri, S.

37th Annual Meeting of the Society for Neuroscience (Neuroscience 2007), 37, pages: 1, November 2007 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Mining expression-dependent modules in the human interaction network

Georgii, E., Dietmann, S., Uno, T., Pagel, P., Tsuda, K.

BMC Bioinformatics, 8(Suppl. 8):S4, November 2007 (poster)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Policy Learning for Robotics

Peters, J.

14th International Conference on Neural Information Processing (ICONIP), November 2007 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
A unifying framework for robot control with redundant DOFs

Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.

Autonomous Robots, 24(1):1-12, October 2007 (article)

Abstract
Recently, Udwadia (Proc. R. Soc. Lond. A 2003:1783–1800, 2003) suggested to derive tracking controllers for mechanical systems with redundant degrees-of-freedom (DOFs) using a generalization of Gauss’ principle of least constraint. This method allows reformulating control problems as a special class of optimal controllers. In this paper, we take this line of reasoning one step further and demonstrate that several well-known and also novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. The suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
The Need for Open Source Software in Machine Learning

Sonnenburg, S., Braun, M., Ong, C., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K., Pereira, F., Rasmussen, C., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.

Journal of Machine Learning Research, 8, pages: 2443-2466, October 2007 (article)

Abstract
Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not realized, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.

ei

PDF Web [BibTex]

PDF Web [BibTex]