Header logo is


1998


no image
2D micro particle assembly using atomic force microscope

Sitti, M., Hirahara, K., Hashimoto, H.

In Micromechatronics and Human Science, 1998. MHS’98. Proceedings of the 1998 International Symposium on, pages: 143-148, 1998 (inproceedings)

pi

[BibTex]

1998


[BibTex]


no image
Towards biomimetic vision

Shibata, T., Schaal, S.

In International Conference on Intelligence Robots and Systems, pages: 872-879, Victoria, Canada, 1998, clmc (inproceedings)

Abstract
Oculomotor control is the foundation of most biological visual systems, as well as an important component in the entire perceptual-motor system. We review some of the most basic principles of biological oculomotor systems, and explore their usefulness from both the biological and computational point of view. As an example of biomimetic oculomotor control, we present the state of our implementations and experimental results using the vestibulo-ocular-reflex and opto-kinetic-reflex paradigm

am

link (url) [BibTex]

link (url) [BibTex]


no image
Macro to nano tele-manipulation through nanoelectromechanical systems

Sitti, M., Hashimoto, H.

In Industrial Electronics Society, 1998. IECON’98. Proceedings of the 24th Annual Conference of the IEEE, 1, pages: 98-103, 1998 (inproceedings)

pi

[BibTex]

[BibTex]


Thumb xl teaser 1
Accurate Vision-based Manipulation through Contact Reasoning

Kloss, A., Bauza, M., Wu, J., Tenenbaum, J. B., Rodriguez, A., Bohg, J.

In International Conference on Robotics and Automation, May (inproceedings) Submitted

Abstract
Planning contact interactions is one of the core challenges of many robotic tasks. Optimizing contact locations while taking dynamics into account is computationally costly and in only partially observed environments, executing contact-based tasks often suffers from low accuracy. We present an approach that addresses these two challenges for the problem of vision-based manipulation. First, we propose to disentangle contact from motion optimization. Thereby, we improve planning efficiency by focusing computation on promising contact locations. Second, we use a hybrid approach for perception and state estimation that combines neural networks with a physically meaningful state representation. In simulation and real-world experiments on the task of planar pushing, we show that our method is more efficient and achieves a higher manipulation accuracy than previous vision-based approaches.

am

[BibTex]


[BibTex]


no image
test jon
(book)

[BibTex]


no image
Geometric Image Synthesis

Alhaija, H. A., Mustikovela, S. K., Geiger, A., Rother, C.

(conference)

avg

Project Page [BibTex]

Project Page [BibTex]