Header logo is


2004


no image
Imaging sub-ns spin dynamics in magnetic nanostructures with magnetic transmission X-ray microscopy

Fischer, P., Stoll, H., Puzic, A., Van Waeyenberge, B., Raabe, J., Haug, T., Denbeaux, G., Pearson, A., Höllinger, R., Back, C. H., Weiss, D., Schütz, G.

In Synchrotron Radiation Instrumentation, 705, pages: 1291-1294, AIP Conference Proceedings, American Institute of Physics, San Francisco, California (USA), 2004 (inproceedings)

mms

[BibTex]

2004


[BibTex]


no image
Modern nanostructured high-temperature permanent magnets

Goll, D., Kronmüller, H., Stadelmaier, H. H.

In Proceedings of the 18th International Workshop on Rare-Earth Magnets and their Applications, pages: 578-583, Laboratoire de Cristallographie/Laboratoire Louis Néel, CNRS, Grenoble, 2004 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Existence of transient temperature spike induced by SHI: evidence by ion beam analysis

Avasthi, D. K., Ghosh, S., Srivastava, S. K., Assmann, W.

In 219-220, pages: 206-214, Albuquerque, NM [USA], 2004 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Three-dimensional nanoscale manipulation and manufacturing using proximal probes: controlled pulling of polymer micro/nanofibers

Nain, A. S., Amon, C., Sitti, M.

In Mechatronics, 2004. ICM’04. Proceedings of the IEEE International Conference on, pages: 224-230, 2004 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Micro-and nano-scale robotics

Sitti, M.

In American Control Conference, 2004. Proceedings of the 2004, 1, pages: 1-8, 2004 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Gecko inspired surface climbing robots

Menon, C., Murphy, M., Sitti, M.

In Robotics and Biomimetics, 2004. ROBIO 2004. IEEE International Conference on, pages: 431-436, 2004 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Hard magnetic hollow nanospheres

Goll, D., Berkowitz, A. E., Bertram, H. N.

In Proceedings of the 18th International Workshop on Rare-Earth Magnets and their Applications, pages: 704-707, Laboratoire de Cristallographie/Laboratoire Louis Neel, CNRS, Grenoble, 2004 (inproceedings)

mms

[BibTex]

[BibTex]

1998


no image
Programmable pattern generators

Schaal, S., Sternad, D.

In 3rd International Conference on Computational Intelligence in Neuroscience, pages: 48-51, Research Triangle Park, NC, Oct. 24-28, October 1998, clmc (inproceedings)

Abstract
This paper explores the idea to create complex human-like arm movements from movement primitives based on nonlinear attractor dynamics. Each degree-of-freedom of an arm is assumed to have two independent abilities to create movement, one through a discrete dynamic system, and one through a rhythmic system. The discrete system creates point-to-point movements based on internal or external target specifications. The rhythmic system can add an additional oscillatory movement relative to the current position of the discrete system. In the present study, we develop appropriate dynamic systems that can realize the above model, motivate the particular choice of the systems from a biological and engineering point of view, and present simulation results of the performance of such movement primitives. Implementation results on a Sarcos Dexterous Arm are discussed.

am

link (url) [BibTex]

1998


link (url) [BibTex]


no image
Prior knowledge in support vector kernels

Schölkopf, B., Simard, P., Smola, A., Vapnik, V.

In Advances in Neural Information Processing Systems 10, pages: 640-646 , (Editors: M Jordan and M Kearns and S Solla ), MIT Press, Cambridge, MA, USA, Eleventh Annual Conference on Neural Information Processing (NIPS), June 1998 (inproceedings)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
From regularization operators to support vector kernels

Smola, A., Schölkopf, B.

In Advances in Neural Information Processing Systems 10, pages: 343-349, (Editors: M Jordan and M Kearns and S Solla), MIT Press, Cambridge, MA, USA, 11th Annual Conference on Neural Information Processing (NIPS), June 1998 (inproceedings)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Robust local learning in high dimensional spaces

Vijayakumar, S., Schaal, S.

In 5th Joint Symposium on Neural Computation, pages: 186-193, Institute for Neural Computation, University of California, San Diego, San Diego, CA, 1998, clmc (inproceedings)

Abstract
Incremental learning of sensorimotor transformations in high dimensional spaces is one of the basic prerequisites for the success of autonomous robot devices as well as biological movement systems. So far, due to sparsity of data in high dimensional spaces, learning in such settings requires a significant amount of prior knowledge about the learning task, usually provided by a human expert. In this paper, we suggest a partial revision of this view. Based on empirical studies, we observed that, despite being globally high dimensional and sparse, data distributions from physical movement systems are locally low dimensional and dense. Under this assumption, we derive a learning algorithm, Locally Adaptive Subspace Regression, that exploits this property by combining a dynamically growing local dimensionality reduction technique as a preprocessing step with a nonparametric learning technique, locally weighted regression, that also learns the region of validity of the regression. The usefulness of the algorithm and the validity of its assumptions are illustrated for a synthetic data set, and for data of the inverse dynamics of human arm movements and an actual 7 degree-of-freedom anthropomorphic robot arm.

am

[BibTex]

[BibTex]


no image
Nano tele-manipulation using virtual reality interface

Sitti, M., Horiguchi, S., Hashimoto, H.

In Industrial Electronics, 1998. Proceedings. ISIE’98. IEEE International Symposium on, 1, pages: 171-176, 1998 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Local dimensionality reduction

Schaal, S., Vijayakumar, S., Atkeson, C. G.

In Advances in Neural Information Processing Systems 10, pages: 633-639, (Editors: Jordan, M. I.;Kearns, M. J.;Solla, S. A.), MIT Press, Cambridge, MA, 1998, clmc (inproceedings)

Abstract
If globally high dimensional data has locally only low dimensional distributions, it is advantageous to perform a local dimensionality reduction before further processing the data. In this paper we examine several techniques for local dimensionality reduction in the context of locally weighted linear regression. As possible candidates, we derive local versions of factor analysis regression, principle component regression, principle component regression on joint distributions, and partial least squares regression. After outlining the statistical bases of these methods, we perform Monte Carlo simulations to evaluate their robustness with respect to violations of their statistical assumptions. One surprising outcome is that locally weighted partial least squares regression offers the best average results, thus outperforming even factor analysis, the theoretically most appealing of our candidate techniques.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Tele-nanorobotics using atomic force microscope

Sitti, M., Hashimoto, H.

In Intelligent Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ International Conference on, 3, pages: 1739-1746, 1998 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Biomimetic gaze stabilization based on a study of the vestibulocerebellum

Shibata, T., Schaal, S.

In European Workshop on Learning Robots, pages: 84-94, Edinburgh, UK, 1998, clmc (inproceedings)

Abstract
Accurate oculomotor control is one of the essential pre-requisites for successful visuomotor coordination. In this paper, we suggest a biologically inspired control system for learning gaze stabilization with a biomimetic robotic oculomotor system. In a stepwise fashion, we develop a control circuit for the vestibulo-ocular reflex (VOR) and the opto-kinetic response (OKR), and add a nonlinear learning network to allow adaptivity. We discuss the parallels and differences of our system with biological oculomotor control and suggest solutions how to deal with nonlinearities and time delays in the control system. In simulation and actual robot studies, we demonstrate that our system can learn gaze stabilization in real time in only a few seconds with high final accuracy.

am

link (url) [BibTex]

link (url) [BibTex]


no image
2D micro particle assembly using atomic force microscope

Sitti, M., Hirahara, K., Hashimoto, H.

In Micromechatronics and Human Science, 1998. MHS’98. Proceedings of the 1998 International Symposium on, pages: 143-148, 1998 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Towards biomimetic vision

Shibata, T., Schaal, S.

In International Conference on Intelligence Robots and Systems, pages: 872-879, Victoria, Canada, 1998, clmc (inproceedings)

Abstract
Oculomotor control is the foundation of most biological visual systems, as well as an important component in the entire perceptual-motor system. We review some of the most basic principles of biological oculomotor systems, and explore their usefulness from both the biological and computational point of view. As an example of biomimetic oculomotor control, we present the state of our implementations and experimental results using the vestibulo-ocular-reflex and opto-kinetic-reflex paradigm

am

link (url) [BibTex]

link (url) [BibTex]


no image
Macro to nano tele-manipulation through nanoelectromechanical systems

Sitti, M., Hashimoto, H.

In Industrial Electronics Society, 1998. IECON’98. Proceedings of the 24th Annual Conference of the IEEE, 1, pages: 98-103, 1998 (inproceedings)

pi

[BibTex]

[BibTex]


Thumb xl teaser 1
Accurate Vision-based Manipulation through Contact Reasoning

Kloss, A., Bauza, M., Wu, J., Tenenbaum, J. B., Rodriguez, A., Bohg, J.

In International Conference on Robotics and Automation, May (inproceedings) Submitted

Abstract
Planning contact interactions is one of the core challenges of many robotic tasks. Optimizing contact locations while taking dynamics into account is computationally costly and in only partially observed environments, executing contact-based tasks often suffers from low accuracy. We present an approach that addresses these two challenges for the problem of vision-based manipulation. First, we propose to disentangle contact from motion optimization. Thereby, we improve planning efficiency by focusing computation on promising contact locations. Second, we use a hybrid approach for perception and state estimation that combines neural networks with a physically meaningful state representation. In simulation and real-world experiments on the task of planar pushing, we show that our method is more efficient and achieves a higher manipulation accuracy than previous vision-based approaches.

am

[BibTex]


[BibTex]


no image
Geometric Image Synthesis

Alhaija, H. A., Mustikovela, S. K., Geiger, A., Rother, C.

(conference)

avg

Project Page [BibTex]

Project Page [BibTex]