Header logo is


2010


no image
A scalable trust-region algorithm with application to mixed-norm regression

Kim, D., Sra, S., Dhillon, I.

In Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pages: 519-526, (Editors: Fürnkranz, J. , T. Joachims), International Machine Learning Society, Madison, WI, USA, 27th International Conference on Machine Learning (ICML), June 2010 (inproceedings)

Abstract
We present a new algorithm for minimizing a convex loss-function subject to regularization. Our framework applies to numerous problems in machine learning and statistics; notably, for sparsity-promoting regularizers such as ℓ1 or ℓ1, ∞ norms, it enables efficient computation of sparse solutions. Our approach is based on the trust-region framework with nonsmooth objectives, which allows us to build on known results to provide convergence analysis. We avoid the computational overheads associated with the conventional Hessian approximation used by trust-region methods by instead using a simple separable quadratic approximation. This approximation also enables use of proximity operators for tackling nonsmooth regularizers. We illustrate the versatility of our resulting algorithm by specializing it to three mixed-norm regression problems: group lasso [36], group logistic regression [21], and multi-task lasso [19]. We experiment with both synthetic and real-world large-scale data—our method is seen to be competitive, robust, and scalable.

ei

PDF Web [BibTex]

2010


PDF Web [BibTex]


no image
The Influence of the Image Basis on Modeling and Steganalysis Performance

Schwamberger, V., Le, P., Schölkopf, B., Franz, M.

In Information Hiding, pages: 133-144, (Editors: R Böhme and PWL Fong and R Safavi-Naini), Springer, Berlin, Germany, 12th international Workshop (IH), June 2010 (inproceedings)

Abstract
We compare two image bases with respect to their capabilities for image modeling and steganalysis. The first basis consists of wavelets, the second is a Laplacian pyramid. Both bases are used to decompose the image into subbands where the local dependency structure is modeled with a linear Bayesian estimator. Similar to existing approaches, the image model is used to predict coefficient values from their neighborhoods, and the final classification step uses statistical descriptors of the residual. Our findings are counter-intuitive on first sight: Although Laplacian pyramids have better image modeling capabilities than wavelets, steganalysis based on wavelets is much more successful. We present a number of experiments that suggest possible explanations for this result.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Simultaneous PET/MRI for the evaluation of hemato-oncological diseases with lower extremity manifestations

Sauter, A., Horger, M., Boss, A., Kolb, A., Mantlik, F., Kanz, L., Pfannenberg, C., Stegger, L., Claussen, C., Pichler, B.

Journal of Nuclear Medicine, 51(Supplement 2):1001 , June 2010 (poster)

Abstract
Objectives: The study purpose is the evaluation of patients, suffering from hemato-oncological disease with complications at the lower extremities, using simultaneous PET/MRI. Methods: Until now two patients (chronic active graft-versus-host-disease [GvHD], B-non Hodgkin lymphoma [B-NHL]) before and after therapy were examined in a 3-Tesla-BrainPET/MRI hybrid system following F-18-FDG-PET/CT. Simultaneous static PET (1200 sec.) and MRI scans (T1WI, T2WI, post-CA) were acquired. Results: Initial results show the feasibility of using hybrid PET/MRI-technology for musculoskeletal imaging of the lower extremities. Simultaneous PET and MRI could be acquired in diagnostic quality. Before treatment our patient with GvHD had a high fascia and muscle FDG uptake, possibly due to muscle encasement. T2WI and post gadolinium T1WI revealed a fascial thickening and signs of inflammation. After therapy with steroids followed by imatinib the patient’s symptoms improved while, the muscular FDG uptake droped whereas the MRI signal remained unchanged. We assume that fascial elasticity improved during therapy despite persistance of fascial thickening. The examination of the second patient with B-NHL manifestation in the tibia showed a significant signal and uptake decrease in the bone marrow and surrounding lesions in both, MRI and PET after therapy with rituximab. The lack of residual FDG-uptake proved superior to MRI information alone helping for exclusion of vital tumor. Conclusions: Combined PET/MRI is a powerful tool to monitor diseases requiring high soft tissue contrast along with molecular information from the FDG uptake.

ei

Web [BibTex]

Web [BibTex]


no image
A PAC-Bayesian Analysis of Co-clustering, Graph Clustering, and Pairwise Clustering

Seldin, Y.

In ICML 2010 Workshop on Social Analytics: Learning from human interactions, pages: 1-5, ICML Workshop on Social Analytics: Learning from human interactions, June 2010 (inproceedings)

Abstract
We review briefly the PAC-Bayesian analysis of co-clustering (Seldin and Tishby, 2008, 2009, 2010), which provided generalization guarantees and regularization terms absent in the preceding formulations of this problem and achieved state-of-the-art prediction results in MovieLens collaborative filtering task. Inspired by this analysis we formulate weighted graph clustering1 as a prediction problem: given a subset of edge weights we analyze the ability of graph clustering to predict the remaining edge weights. This formulation enables practical and theoretical comparison of different approaches to graph clustering as well as comparison of graph clustering with other possible ways to model the graph. Following the lines of (Seldin and Tishby, 2010) we derive PAC-Bayesian generalization bounds for graph clustering. The bounds show that graph clustering should optimize a trade-off between empirical data fit and the mutual information that clusters preserve on the graph nodes. A similar trade-off derived from information-theoretic considerations was already shown to produce state-of-the-art results in practice (Slonim et al., 2005; Yom-Tov and Slonim, 2009). This paper supports the empirical evidence by providing a better theoretical foundation, suggesting formal generalization guarantees, and offering a more accurate way to deal with finite sample issues.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Reinforcement learning of motor skills in high dimensions: A path integral approach

Theodorou, E., Buchli, J., Schaal, S.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 2397-2403, May 2010, clmc (inproceedings)

Abstract
Reinforcement learning (RL) is one of the most general approaches to learning control. Its applicability to complex motor systems, however, has been largely impossible so far due to the computational difficulties that reinforcement learning encounters in high dimensional continuous state-action spaces. In this paper, we derive a novel approach to RL for parameterized control policies based on the framework of stochastic optimal control with path integrals. While solidly grounded in optimal control theory and estimation theory, the update equations for learning are surprisingly simple and have no danger of numerical instabilities as neither matrix inversions nor gradient learning rates are required. Empirical evaluations demonstrate significant performance improvements over gradient-based policy learning and scalability to high-dimensional control problems. Finally, a learning experiment on a robot dog illustrates the functionality of our algorithm in a real-world scenario. We believe that our new algorithm, Policy Improvement with Path Integrals (PI2), offers currently one of the most efficient, numerically robust, and easy to implement algorithms for RL in robotics.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Inverse dynamics control of floating base systems using orthogonal decomposition

Mistry, M., Buchli, J., Schaal, S.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 3406-3412, May 2010, clmc (inproceedings)

Abstract
Model-based control methods can be used to enable fast, dexterous, and compliant motion of robots without sacrificing control accuracy. However, implementing such techniques on floating base robots, e.g., humanoids and legged systems, is non-trivial due to under-actuation, dynamically changing constraints from the environment, and potentially closed loop kinematics. In this paper, we show how to compute the analytically correct inverse dynamics torques for model-based control of sufficiently constrained floating base rigid-body systems, such as humanoid robots with one or two feet in contact with the environment. While our previous inverse dynamics approach relied on an estimation of contact forces to compute an approximate inverse dynamics solution, here we present an analytically correct solution by using an orthogonal decomposition to project the robot dynamics onto a reduced dimensional space, independent of contact forces. We demonstrate the feasibility and robustness of our approach on a simulated floating base bipedal humanoid robot and an actual robot dog locomoting over rough terrain.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Fast, robust quadruped locomotion over challenging terrain

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 2665-2670, May 2010, clmc (inproceedings)

Abstract
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates, (2) a body trajectory optimizer based on the Zero-Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrain of varying difficulty levels. We demonstrate the generalization ability of this controller by presenting test results from an independent external test team on terrains that have never been shown to us.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Apprenticeship learning via soft local homomorphisms

Boularias, A., Chaib-Draa, B.

In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA 2010), pages: 2971-2976, IEEE, Piscataway, NJ, USA, 2010 IEEE International Conference on Robotics and Automation (ICRA), May 2010 (inproceedings)

Abstract
We consider the problem of apprenticeship learning when the expert's demonstration covers only a small part of a large state space. Inverse Reinforcement Learning (IRL) provides an efficient solution to this problem based on the assumption that the expert is optimally acting in a Markov Decision Process (MDP). However, past work on IRL requires an accurate estimate of the frequency of encountering each feature of the states when the robot follows the expert‘s policy. Given that the complete policy of the expert is unknown, the features frequencies can only be empirically estimated from the demonstrated trajectories. In this paper, we propose to use a transfer method, known as soft homomorphism, in order to generalize the expert‘s policy to unvisited regions of the state space. The generalized policy can be used either as the robot‘s final policy, or to calculate the features frequencies within an IRL algorithm. Empirical results show that our approach is able to learn good policies from a small number of demonstrations.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Using Model Knowledge for Learning Inverse Dynamics

Nguyen-Tuong, D., Peters, J.

In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA 2010), pages: 2677-2682, IEEE, Piscataway, NJ, USA, 2010 IEEE International Conference on Robotics and Automation (ICRA), May 2010 (inproceedings)

Abstract
In recent years, learning models from data has become an increasingly interesting tool for robotics, as it allows straightforward and accurate model approximation. However, in most robot learning approaches, the model is learned from scratch disregarding all prior knowledge about the system. For many complex robot systems, available prior knowledge from advanced physics-based modeling techniques can entail valuable information for model learning that may result in faster learning speed, higher accuracy and better generalization. In this paper, we investigate how parametric physical models (e.g., obtained from rigid body dynamics) can be used to improve the learning performance, and, especially, how semiparametric regression methods can be applied in this context. We present two possible semiparametric regression approaches, where the knowledge of the physical model can either become part of the mean function or of the kernel in a nonparametric Gaussian process regression. We compare the learning performance o f these methods first on sampled data and, subsequently, apply the obtained inverse dynamics models in tracking control on a real Barrett WAM. The results show that the semiparametric models learned with rigid body dynamics as prior outperform the standard rigid body dynamics models on real data while generalizing better for unknown parts of the state space.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Coherent Inference on Optimal Play in Game Trees

Hennig, P., Stern, D., Graepel, T.

In JMLR Workshop and Conference Proceedings Volume 9: AISTATS 2010, pages: 326-333, (Editors: Teh, Y.W. , M. Titterington ), JMLR, Cambridge, MA, USA, Thirteenth International Conference on Artificial Intelligence and Statistics, May 2010 (inproceedings)

Abstract
Round-based games are an instance of discrete planning problems. Some of the best contemporary game tree search algorithms use random roll-outs as data. Relying on a good policy, they learn on-policy values by propagating information upwards in the tree, but not between sibling nodes. Here, we present a generative model and a corresponding approximate message passing scheme for inference on the optimal, off-policy value of nodes in smooth AND/OR trees, given random roll-outs. The crucial insight is that the distribution of values in game trees is not completely arbitrary. We define a generative model of the on-policy values using a latent score for each state, representing the value under the random roll-out policy. Inference on the values under the optimal policy separates into an inductive, pre-data step and a deductive, post-data part. Both can be solved approximately with Expectation Propagation, allowing off-policy value inference for any node in the (exponentially big) tree in linear time.

ei pn

PDF Web [BibTex]

PDF Web [BibTex]


no image
Incremental Sparsification for Real-time Online Model Learning

Nguyen-Tuong, D., Peters, J.

In JMLR Workshop and Conference Proceedings Volume 9: AISTATS 2010, pages: 557-564, (Editors: Teh, Y.W. , M. Titterington), JMLR, Cambridge, MA, USA, Thirteenth International Conference on Artificial Intelligence and Statistics, May 2010 (inproceedings)

Abstract
Online model learning in real-time is required by many applications such as in robot tracking control. It poses a difficult problem, as fast and incremental online regression with large data sets is the essential component which cannot be achieved by straightforward usage of off-the-shelf machine learning methods (such as Gaussian process regression or support vector regression). In this paper, we propose a framework for online, incremental sparsification with a fixed budget designed for large scale real-time model learning. The proposed approach combines a sparsification method based on an independence measure with a large scale database. In combination with an incremental learning approach such as sequential support vector regression, we obtain a regression method which is applicable in real-time online learning. It exhibits competitive learning accuracy when compared with standard regression techniques. Implementation on a real robot emphasizes the applicability of the proposed approach in real-time online model learning for real world systems.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Multitask Learning for Brain-Computer Interfaces

Alamgir, M., Grosse-Wentrup, M., Altun, Y.

In JMLR Workshop and Conference Proceedings Volume 9: AISTATS 2010, pages: 17-24, (Editors: Teh, Y.W. , M. Titterington), JMLR, Cambridge, MA, USA, Thirteenth International Conference on Artificial Intelligence and Statistics , May 2010 (inproceedings)

Abstract
Brain-computer interfaces (BCIs) are limited in their applicability in everyday settings by the current necessity to record subjectspecific calibration data prior to actual use of the BCI for communication. In this paper, we utilize the framework of multitask learning to construct a BCI that can be used without any subject-specific calibration process. We discuss how this out-of-the-box BCI can be further improved in a computationally efficient manner as subject-specific data becomes available. The feasibility of the approach is demonstrated on two sets of experimental EEG data recorded during a standard two-class motor imagery paradigm from a total of 19 healthy subjects. Specifically, we show that satisfactory classification results can be achieved with zero training data, and combining prior recordings with subjectspecific calibration data substantially outperforms using subject-specific data only. Our results further show that transfer between recordings under slightly different experimental setups is feasible.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Identifying Cause and Effect on Discrete Data using Additive Noise Models

Peters, J., Janzing, D., Schölkopf, B.

In JMLR Workshop and Conference Proceedings Volume 9: AISTATS 2010, pages: 597-604, (Editors: YW Teh and M Titterington), JMLR, Cambridge, MA, USA, 13th International Conference on Artificial Intelligence and Statistics, May 2010 (inproceedings)

Abstract
Inferring the causal structure of a set of random variables from a finite sample of the joint distribution is an important problem in science. Recently, methods using additive noise models have been suggested to approach the case of continuous variables. In many situations, however, the variables of interest are discrete or even have only finitely many states. In this work we extend the notion of additive noise models to these cases. Whenever the joint distribution P(X;Y ) admits such a model in one direction, e.g. Y = f(X) + N; N ? X, it does not admit the reversed model X = g(Y ) + ~N ; ~N ? Y as long as the model is chosen in a generic way. Based on these deliberations we propose an efficient new algorithm that is able to distinguish between cause and effect for a finite sample of discrete variables. We show that this algorithm works both on synthetic and real data sets.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Semi-supervised Learning via Generalized Maximum Entropy

Erkan, A., Altun, Y.

In JMLR Workshop and Conference Proceedings Volume 9: AISTATS 2010, pages: 209-216, (Editors: Teh, Y.W. , M. Titterington), JMLR, Cambridge, MA, USA, Thirteenth International Conference on Artificial Intelligence and Statistics , May 2010 (inproceedings)

Abstract
Various supervised inference methods can be analyzed as convex duals of the generalized maximum entropy (MaxEnt) framework. Generalized MaxEnt aims to find a distribution that maximizes an entropy function while respecting prior information represented as potential functions in miscellaneous forms of constraints and/or penalties. We extend this framework to semi-supervised learning by incorporating unlabeled data via modifications to these potential functions reflecting structural assumptions on the data geometry. The proposed approach leads to a family of discriminative semi-supervised algorithms, that are convex, scalable, inherently multi-class, easy to implement, and that can be kernelized naturally. Experimental evaluation of special cases shows the competitiveness of our methodology.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A New Algorithm for Improving the Resolution of Cryo-EM Density Maps

Hirsch, M., Schölkopf, B., Habeck, M.

In Research in Computational Molecular Biology, Lecture Notes in Bioinformatics, Vol. 6044 , pages: 174-188, (Editors: B Berger), Springer, Berlin, Germany, 14th International Conference on Research in Computational Molecular Biology (RECOMB), May 2010 (inproceedings)

Abstract
Cryo-electron microscopy (cryo-EM) plays an increasingly prominent role in structure elucidation of macromolecular assemblies. Advances in experimental instrumentation and computational power have spawned numerous cryo-EM studies of large biomolecular complexes resulting in the reconstruction of three-dimensional density maps at intermediate and low resolution. In this resolution range, identification and interpretation of structural elements and modeling of biomolecular structure with atomic detail becomes problematic. In this paper, we present a novel algorithm that enhances the resolution of intermediate- and low-resolution density maps. Our underlying assumption is to model the low-resolution density map as a blurred and possibly noise-corrupted version of an unknown high-resolution map that we seek to recover by deconvolution. By exploiting the nonnegativity of both the high-resolution map and blur kernel we derive multiplicative updates reminiscent of those used in nonnegative matrix factorization. Our framework allows for easy incorporation of additional prior knowledge such as smoothness and sparseness, on both the sharpened density map and the blur kernel. A probabilistic formulation enables us to derive updates for the hyperparameters, therefore our approach has no parameter that needs adjustment. We apply the algorithm to simulated three-dimensional electron microscopic data. We show that our method provides better resolved density maps when compared with B-factor sharpening, especially in the presence of noise. Moreover, our method can use additional information provided by homologous structures, which helps to improve the resolution even further.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Movement Templates for Learning of Hitting and Batting

Kober, J., Mülling, K., Krömer, O., Lampert, C., Schölkopf, B., Peters, J.

In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA 2010), pages: 853-858, IEEE, Piscataway, NJ, USA, 2010 IEEE International Conference on Robotics and Automation (ICRA), May 2010 (inproceedings)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Solving large-scale nonnegative least squares using an adaptive non-monotonic method

Sra, S., Kim, D., Dhillon, I.

24th European Conference on Operational Research (EURO 2010), 24, pages: 223, April 2010 (poster)

Abstract
We present an efficient algorithm for large-scale non-negative least-squares (NNLS). We solve NNLS by extending the unconstrained quadratic optimization method of Barzilai and Borwein (BB) to handle nonnegativity constraints. Our approach is simple yet efficient. It differs from other constrained BB variants as: (i) it uses a specific subset of variables for computing BB steps; and (ii) it scales these steps adaptively to ensure convergence. We compare our method with both established convex solvers and specialized NNLS methods, and observe highly competitive empirical performance.

ei

PDF [BibTex]

PDF [BibTex]


no image
Sparse regression via a trust-region proximal method

Kim, D., Sra, S., Dhillon, I.

24th European Conference on Operational Research (EURO 2010), 24, pages: 278, April 2010 (poster)

Abstract
We present a method for sparse regression problems. Our method is based on the nonsmooth trust-region framework that minimizes a sum of smooth convex functions and a nonsmooth convex regularizer. By employing a separable quadratic approximation to the smooth part, the method enables the use of proximity operators, which in turn allow tackling the nonsmooth part efficiently. We illustrate our method by implementing it for three important sparse regression problems. In experiments with synthetic and real-world large-scale data, our method is seen to be competitive, robust, and scalable.

ei

PDF [BibTex]

PDF [BibTex]


no image
PAC-Bayesian Bounds for Discrete Density Estimation and Co-clustering Analysis

Seldin, Y., Tishby, N.

Workshop "Foundations and New Trends of PAC Bayesian Learning", 2010, March 2010 (poster)

Abstract
We applied PAC-Bayesian framework to derive gen- eralization bounds for co-clustering1. The analysis yielded regularization terms that were absent in the preceding formulations of this task. The bounds sug- gested that co-clustering should optimize a trade-off between its empirical performance and the mutual in- formation that the cluster variables preserve on row and column indices. Proper regularization enabled us to achieve state-of-the-art results in prediction of the missing ratings in the MovieLens collaborative filtering dataset. In addition a PAC-Bayesian bound for discrete den- sity estimation was derived. We have shown that the PAC-Bayesian bound for classification is a spe- cial case of the PAC-Bayesian bound for discrete den- sity estimation. We further introduced combinatorial priors to PAC-Bayesian analysis. The combinatorial priors are more appropriate for discrete domains, as opposed to Gaussian priors, the latter of which are suitable for continuous domains. It was shown that combinatorial priors lead to regularization terms in the form of mutual information.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Experiments with Motor Primitives to learn Table Tennis

Peters, J., Mülling, K., Kober, J.

In Experimental Robotics, pages: 1-13, (Editors: Khatib, O. , V. Kumar, G. Sukhatme), Springer, Berlin, Germany, 12th International Symposium on Experimental Robotics (ISER), March 2010 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Causality: Objectives and Assessment

Guyon, I., Janzing, D., Schölkopf, B.

In JMLR Workshop and Conference Proceedings: Volume 6 , pages: 1-42, (Editors: I Guyon and D Janzing and B Schölkopf), MIT Press, Cambridge, MA, USA, Causality: Objectives and Assessment (NIPS Workshop) , February 2010 (inproceedings)

Abstract
The NIPS 2008 workshop on causality provided a forum for researchers from different horizons to share their view on causal modeling and address the difficult question of assessing causal models. There has been a vivid debate on properly separating the notion of causality from particular models such as graphical models, which have been dominating the field in the past few years. Part of the workshop was dedicated to discussing the results of a challenge, which offered a wide variety of applications of causal modeling. We have regrouped in these proceedings the best papers presented. Most lectures were videotaped or recorded. All information regarding the challenge and the lectures are found at http://www.clopinet.com/isabelle/Projects/NIPS2008/. This introduction provides a synthesis of the findings and a gentle introduction to causality topics, which are the object of active research.

ei

Web [BibTex]

Web [BibTex]


no image
Leveraging Sequence Classification by Taxonomy-based Multitask Learning

Widmer, C., Leiva, J., Altun, Y., Rätsch, G.

In Research in Computational Molecular Biology, LNCS, Vol. 6044, pages: 522-534, (Editors: B Berger), Springer, Berlin, Germany, 14th Annual International Conference, RECOMB, 2010 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic latent variable models for distinguishing between cause and effect

Mooij, J., Stegle, O., Janzing, D., Zhang, K., Schölkopf, B.

In Advances in Neural Information Processing Systems 23, pages: 1687-1695, (Editors: J Lafferty and CKI Williams and J Shawe-Taylor and RS Zemel and A Culotta), Curran, Red Hook, NY, USA, 24th Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
We propose a novel method for inferring whether X causes Y or vice versa from joint observations of X and Y. The basic idea is to model the observed data using probabilistic latent variable models, which incorporate the effects of unobserved noise. To this end, we consider the hypothetical effect variable to be a function of the hypothetical cause variable and an independent noise term (not necessarily additive). An important novel aspect of our work is that we do not restrict the model class, but instead put general non-parametric priors on this function and on the distribution of the cause. The causal direction can then be inferred by using standard Bayesian model selection. We evaluate our approach on synthetic data and real-world data and report encouraging results.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
JigPheno: Semantic Feature Extraction in biological images

Karaletsos, T., Stegle, O., Winn, J., Borgwardt, K.

In NIPS, Workshop on Machine Learning in Computational Biology, 2010 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Nonparametric Tree Graphical Models

Song, L., Gretton, A., Guestrin, C.

In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Volume 9 , pages: 765-772, (Editors: YW Teh and M Titterington ), JMLR, AISTATS, 2010 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Novel machine learning methods for MHC Class I binding prediction

Widmer, C., Toussaint, N., Altun, Y., Kohlbacher, O., Rätsch, G.

In Pattern Recognition in Bioinformatics, pages: 98-109, (Editors: TMH Dijkstra and E Tsivtsivadze and E Marchiori and T Heskes), Springer, Berlin, Germany, 5th IAPR International Conference, PRIB, 2010 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Bootstrapping Apprenticeship Learning

Boularias, A., Chaib-Draa, B.

In Advances in Neural Information Processing Systems 23, pages: 289-297, (Editors: Lafferty, J. , C. K.I. Williams, J. Shawe-Taylor, R. S. Zemel, A. Culotta), Curran, Red Hook, NY, USA, Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
We consider the problem of apprenticeship learning where the examples, demonstrated by an expert, cover only a small part of a large state space. Inverse Reinforcement Learning (IRL) provides an efficient tool for generalizing the demonstration, based on the assumption that the expert is maximizing a utility function that is a linear combination of state-action features. Most IRL algorithms use a simple Monte Carlo estimation to approximate the expected feature counts under the expert's policy. In this paper, we show that the quality of the learned policies is highly sensitive to the error in estimating the feature counts. To reduce this error, we introduce a novel approach for bootstrapping the demonstration by assuming that: (i), the expert is (near-)optimal, and (ii), the dynamics of the system is known. Empirical results on gridworlds and car racing problems show that our approach is able to learn good policies from a small number of demonstrations.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Zhang, K., Hyvärinen, A.

In JMLR Workshop and Conference Proceedings, Volume 6, pages: 157-164, (Editors: I Guyon and D Janzing and B Schölkopf), MIT Press, Cambridge, MA, USA, Causality: Objectives and Assessment (NIPS Workshop), 2010 (inproceedings)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning the Reward Model of Dialogue POMDPs

Boularias, A., Chinaei, H., Chaib-Draa, B.

NIPS Workshop on Machine Learning for Assistive Technology (MLAT-2010), 2010 (poster)

ei

[BibTex]

[BibTex]


no image
Characteristic Kernels on Structured Domains Excel in Robotics and Human Action Recognition

Danafar, S., Gretton, A., Schmidhuber, J.

In Machine Learning and Knowledge Discovery in Databases, LNCS Vol. 6321, pages: 264-279, (Editors: JL Balcázar and F Bonchi and A Gionis and M Sebag), Springer, Berlin, Germany, ECML PKDD, 2010 (inproceedings)

Abstract
Embedding probability distributions into a sufficiently rich (characteristic) reproducing kernel Hilbert space enables us to take higher order statistics into account. Characterization also retains effective statistical relation between inputs and outputs in regression and classification. Recent works established conditions for characteristic kernels on groups and semigroups. Here we study characteristic kernels on periodic domains, rotation matrices, and histograms. Such structured domains are relevant for homogeneity testing, forward kinematics, forward dynamics, inverse dynamics, etc. Our kernel-based methods with tailored characteristic kernels outperform previous methods on robotics problems and also on a widely used benchmark for recognition of human actions in videos.

ei

DOI [BibTex]

DOI [BibTex]


no image
Movement extraction by detecting dynamics switches and repetitions

Chiappa, S., Peters, J.

In Advances in Neural Information Processing Systems 23, pages: 388-396, (Editors: Lafferty, J. , C. K.I. Williams, J. Shawe-Taylor, R. S. Zemel, A. Culotta), Curran, Red Hook, NY, USA, Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
Many time-series such as human movement data consist of a sequence of basic actions, e.g., forehands and backhands in tennis. Automatically extracting and characterizing such actions is an important problem for a variety of different applications. In this paper, we present a probabilistic segmentation approach in which an observed time-series is modeled as a concatenation of segments corresponding to different basic actions. Each segment is generated through a noisy transformation of one of a few hidden trajectories representing different types of movement, with possible time re-scaling. We analyze three different approximation methods for dealing with model intractability, and demonstrate how the proposed approach can successfully segment table tennis movements recorded using a robot arm as haptic input device.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Space-Variant Single-Image Blind Deconvolution for Removing Camera Shake

Harmeling, S., Hirsch, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 23, pages: 829-837, (Editors: J Lafferty and CKI Williams and J Shawe-Taylor and RS Zemel and A Culotta), Curran, Red Hook, NY, USA, 24th Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
Modelling camera shake as a space-invariant convolution simplifies the problem of removing camera shake, but often insufficiently models actual motion blur such as those due to camera rotation and movements outside the sensor plane or when objects in the scene have different distances to the camera. In an effort to address these limitations, (i) we introduce a taxonomy of camera shakes, (ii) we build on a recently introduced framework for space-variant filtering by Hirsch et al. and a fast algorithm for single image blind deconvolution for space-invariant filters by Cho and Lee to construct a method for blind deconvolution in the case of space-variant blur, and (iii), we present an experimental setup for evaluation that allows us to take images with real camera shake while at the same time recording the spacevariant point spread function corresponding to that blur. Finally, we demonstrate that our method is able to deblur images degraded by spatially-varying blur originating from real camera shake, even without using additionally motion sensor information.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Getting lost in space: Large sample analysis of the resistance distance

von Luxburg, U., Radl, A., Hein, M.

In Advances in Neural Information Processing Systems 23, pages: 2622-2630, (Editors: Lafferty, J. , C. K.I. Williams, J. Shawe-Taylor, R. S. Zemel, A. Culotta), Curran, Red Hook, NY, USA, Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
The commute distance between two vertices in a graph is the expected time it takes a random walk to travel from the first to the second vertex and back. We study the behavior of the commute distance as the size of the underlying graph increases. We prove that the commute distance converges to an expression that does not take into account the structure of the graph at all and that is completely meaningless as a distance function on the graph. Consequently, the use of the raw commute distance for machine learning purposes is strongly discouraged for large graphs and in high dimensions. As an alternative we introduce the amplified commute distance that corrects for the undesired large sample effects.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Distinguishing between cause and effect

Mooij, J., Janzing, D.

In JMLR Workshop and Conference Proceedings: Volume 6, pages: 147-156, (Editors: Guyon, I. , D. Janzing, B. Schölkopf), MIT Press, Cambridge, MA, USA, Causality: Objectives and Assessment (NIPS Workshop) , 2010 (inproceedings)

Abstract
We describe eight data sets that together formed the CauseEffectPairs task in the Causality Challenge #2: Pot-Luck competition. Each set consists of a sample of a pair of statistically dependent random variables. One variable is known to cause the other one, but this information was hidden from the participants; the task was to identify which of the two variables was the cause and which one the effect, based upon the observed sample. The data sets were chosen such that we expect common agreement on the ground truth. Even though part of the statistical dependences may also be due to hidden common causes, common sense tells us that there is a significant cause-effect relation between the two variables in each pair. We also present baseline results using three different causal inference methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Erste Erfahrungen bei der Beurteilung hämato-onkologischer Krankheitsmanifestationen an den Extremitäten mit einem PET/MRT-Hybridsystem.

Sauter, A., Boss, A., Kolb, A., Mantlik, F., Bethge, W., Kanz, L., Pfannenberg, C., Stegger, L., Pichler, B., Claussen, C., Horger, M.

Thieme Verlag, Stuttgart, Germany, 91. Deutscher R{\"o}ntgenkongress, 2010 (poster)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Kernel Methods for Detecting the Direction of Time Series

Peters, J., Janzing, D., Gretton, A., Schölkopf, B.

In Advances in Data Analysis, Data Handling and Business Intelligence, pages: 57-66, (Editors: A Fink and B Lausen and W Seidel and A Ultsch), Springer, Berlin, Germany, 32nd Annual Conference of the Gesellschaft f{\"u}r Klassifikation e.V. (GfKl), 2010 (inproceedings)

Abstract
We propose two kernel based methods for detecting the time direction in empirical time series. First we apply a Support Vector Machine on the finite-dimensional distributions of the time series (classification method) by embedding these distributions into a Reproducing Kernel Hilbert Space. For the ARMA method we fit the observed data with an autoregressive moving average process and test whether the regression residuals are statistically independent of the past values. Whenever the dependence in one direction is significantly weaker than in the other we infer the former to be the true one. Both approaches were able to detect the direction of the true generating model for simulated data sets. We also applied our tests to a large number of real world time series. The ARMA method made a decision for a significant fraction of them, in which it was mostly correct, while the classification method did not perform as well, but still exceeded chance level.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Switched Latent Force Models for Movement Segmentation

Alvarez, M., Peters, J., Schölkopf, B., Lawrence, N.

In Advances in neural information processing systems 23, pages: 55-63, (Editors: J Lafferty and CKI Williams and J Shawe-Taylor and RS Zemel and A Culotta), Curran, Red Hook, NY, USA, 24th Annual Conference on Neural Information Processing Systems (NIPS), 2010 (inproceedings)

Abstract
Latent force models encode the interaction between multiple related dynamical systems in the form of a kernel or covariance function. Each variable to be modeled is represented as the output of a differential equation and each differential equation is driven by a weighted sum of latent functions with uncertainty given by a Gaussian process prior. In this paper we consider employing the latent force model framework for the problem of determining robot motor primitives. To deal with discontinuities in the dynamical systems or the latent driving force we introduce an extension of the basic latent force model, that switches between different latent functions and potentially different dynamical systems. This creates a versatile representation for robot movements that can capture discrete changes and non-linearities in the dynamics. We give illustrative examples on both synthetic data and for striking movements recorded using a BarrettWAM robot as haptic input device. Our inspiration is robot motor primitives, but we expect our model to have wide application for dynamical systems including models for human motion capture data and systems biology.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Adhesion recovery and passive peeling in a wall climbing robot using adhesives

Kute, C., Murphy, M. P., Mengüç, Y., Sitti, M.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 2797-2802, 2010 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Are reaching movements planned in kinematic or dynamic coordinates?

Ellmer, A., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2010), Naples, Florida, 2010, 2010, clmc (inproceedings)

Abstract
Whether human reaching movements are planned and optimized in kinematic (task space) or dynamic (joint or muscle space) coordinates is still an issue of debate. The first hypothesis implies that a planner produces a desired end-effector position at each point in time during the reaching movement, whereas the latter hypothesis includes the dynamics of the muscular-skeletal control system to produce a continuous end-effector trajectory. Previous work by Wolpert et al (1995) showed that when subjects were led to believe that their straight reaching paths corresponded to curved paths as shown on a computer screen, participants adapted the true path of their hand such that they would visually perceive a straight line in visual space, despite that they actually produced a curved path. These results were interpreted as supporting the stance that reaching trajectories are planned in kinematic coordinates. However, this experiment could only demonstrate that adaptation to altered paths, i.e. the position of the end-effector, did occur, but not that the precise timing of end-effector position was equally planned, i.e., the trajectory. Our current experiment aims at filling this gap by explicitly testing whether position over time, i.e. velocity, is a property of reaching movements that is planned in kinematic coordinates. In the current experiment, the velocity profiles of cursor movements corresponding to the participant's hand motions were skewed either to the left or to the right; the path itself was left unaltered. We developed an adaptation paradigm, where the skew of the velocity profile was introduced gradually and participants reported no awareness of any manipulation. Preliminary results indicate that the true hand motion of participants did not alter, i.e. there was no adaptation so as to counterbalance the introduced skew. However, for some participants, peak hand velocities were lowered for higher skews, which suggests that participants interpreted the manipulation as mere noise due to variance in their own movement. In summary, for a visuomotor transformation task, the hypothesis of a planned continuous end-effector trajectory predicts adaptation to a modified velocity profile. The current experiment found no systematic adaptation under such transformation, but did demonstrate an effect that is more in accordance that subjects could not perceive the manipulation and rather interpreted as an increase of noise.

am

[BibTex]

[BibTex]


no image
Absence of element specific ferromagnetism in Co doped ZnO investigated by soft X-ray resonant reflectivity

Goering, E., Brück, S., Tietze, T., Jakob, G., Gacic, M., Adrian, H.

In 200, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Probing the local magnetization dynamics in large systems with spatial inhomogeneity

Li, J, Lee, M.-S., Amaladass, E., He, W., Eimüller, T.

In 200, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Wetting of grain boundaries in Al by the solid Al3Mg2 phase

Straumal, B. B., Baretzky, B., Kogtenkova, O. A., Straumal, A. B., Sidorenko, A. S.

In 45, pages: 2057-2061, Athens, Greek, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Damping of near-adiabatic magnetization dynamics by excitations of electron-hole pairs

Seib, J., Steiauf, D., Fähnle, M.

In 200, Karlsruhe, Germany, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comparison of linear and nonlinear buck converter models with varying compensator gain values for design optimization

Sattler, Michael, Lui, Yusi, Edrington, Chris S

In North American Power Symposium (NAPS), 2010, pages: 1-7, 2010 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Optimality in Neuromuscular Systems

Theodorou, E. A., Valero-Cuevas, F.

In 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, clmc (inproceedings)

Abstract
Abstract? We provide an overview of optimal control meth- ods to nonlinear neuromuscular systems and discuss their lim- itations. Moreover we extend current optimal control methods to their application to neuromuscular models with realistically numerous musculotendons; as most prior work is limited to torque-driven systems. Recent work on computational motor control has explored the used of control theory and esti- mation as a conceptual tool to understand the underlying computational principles of neuromuscular systems. After all, successful biological systems regularly meet conditions for stability, robustness and performance for multiple classes of complex tasks. Among a variety of proposed control theory frameworks to explain this, stochastic optimal control has become a dominant framework to the point of being a standard computational technique to reproduce kinematic trajectories of reaching movements (see [12]) In particular, we demonstrate the application of optimal control to a neuromuscular model of the index finger with all seven musculotendons producing a tapping task. Our simu- lations include 1) a muscle model that includes force- length and force-velocity characteristics; 2) an anatomically plausible biomechanical model of the index finger that includes a tendi- nous network for the extensor mechanism and 3) a contact model that is based on a nonlinear spring-damper attached at the end effector of the index finger. We demonstrate that it is feasible to apply optimal control to systems with realistically large state vectors and conclude that, while optimal control is an adequate formalism to create computational models of neuro- musculoskeletal systems, there remain important challenges and limitations that need to be considered and overcome such as contact transitions, curse of dimensionality, and constraints on states and controls.

am

PDF [BibTex]

PDF [BibTex]


no image
Magnetization reversal of Fe/Gd multilayers on self-assembled arrays of nanospheres

Amaladass, E., Eimüller, T., Ludescher, B., Tyliszczak, T., Schütz, G.

In 200, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Learning Policy Improvements with Path Integrals

Theodorou, E. A., Buchli, J., Schaal, S.

In International Conference on Artificial Intelligence and Statistics (AISTATS 2010), 2010, clmc (inproceedings)

Abstract
With the goal to generate more scalable algo- rithms with higher efficiency and fewer open parameters, reinforcement learning (RL) has recently moved towards combining classi- cal techniques from optimal control and dy- namic programming with modern learning techniques from statistical estimation the- ory. In this vein, this paper suggests the framework of stochastic optimal control with path integrals to derive a novel approach to RL with parametrized policies. While solidly grounded in value function estimation and optimal control based on the stochastic Hamilton-Jacobi-Bellman (HJB) equations, policy improvements can be transformed into an approximation problem of a path inte- gral which has no open parameters other than the exploration noise. The resulting algorithm can be conceived of as model- based, semi-model-based, or even model free, depending on how the learning problem is structured. Our new algorithm demon- strates interesting similarities with previous RL research in the framework of proba- bility matching and provides intuition why the slightly heuristically motivated proba- bility matching approach can actually per- form well. Empirical evaluations demon- strate significant performance improvements over gradient-based policy learning and scal- ability to high-dimensional control problems. We believe that Policy Improvement with Path Integrals (PI2) offers currently one of the most efficient, numerically robust, and easy to implement algorithms for RL based on trajectory roll-outs.

am

PDF [BibTex]

PDF [BibTex]


no image
Learning optimal control solutions: a path integral approach

Theodorou, E., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2010), Naples, Florida, 2010, 2010, clmc (inproceedings)

Abstract
Investigating principles of human motor control in the framework of optimal control has had a long tradition in neural control of movement, and has recently experienced a new surge of investigations. Ideally, optimal control problems are addresses as a reinforcement learning (RL) problem, which would allow to investigate both the process of acquiring an optimal control solution as well as the solution itself. Unfortunately, the applicability of RL to complex neural and biomechanics systems has been largely impossible so far due to the computational difficulties that arise in high dimensional continuous state-action spaces. As a way out, research has focussed on computing optimal control solutions based on iterative optimal control methods that are based on linear and quadratic approximations of dynamical models and cost functions. These methods require perfect knowledge of the dynamics and cost functions while they are based on gradient and Newton optimization schemes. Their applicability is also restricted to low dimensional problems due to problematic convergence in high dimensions. Moreover, the process of computing the optimal solution is removed from the learning process that might be plausible in biology. In this work, we present a new reinforcement learning method for learning optimal control solutions or motor control. This method, based on the framework of stochastic optimal control with path integrals, has a very solid theoretical foundation, while resulting in surprisingly simple learning algorithms. It is also possible to apply this approach without knowledge of the system model, and to use a wide variety of complex nonlinear cost functions for optimization. We illustrate the theoretical properties of this approach and its applicability to learning motor control tasks for reaching movements and locomotion studies. We discuss its applicability to learning desired trajectories, variable stiffness control (co-contraction), and parameterized control policies. We also investigate the applicability to signal dependent noise control systems. We believe that the suggested method offers one of the easiest to use approaches to learning optimal control suggested in the literature so far, which makes it ideally suited for computational investigations of biological motor control.

am

[BibTex]

[BibTex]


no image
Enhancing the performance of Bio-inspired adhesives

Chung, H., Glass, P., Sitti, M., Washburn, N. R.

In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 240, 2010 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Control performance simulation in the design of a flapping wing micro-aerial vehicle

Hines, L. L., Arabagi, V., Sitti, M.

In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages: 1090-1095, 2010 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]