Header logo is


1999


no image
Segmentation of endpoint trajectories does not imply segmented control

Sternad, D., Schaal, D.

Experimental Brain Research, 124(1):118-136, 1999, clmc (article)

Abstract
While it is generally assumed that complex movements consist of a sequence of simpler units, the quest to define these units of action, or movement primitives, still remains an open question. In this context, two hypotheses of movement segmentation of endpoint trajectories in 3D human drawing movements are re-examined: (1) the stroke-based segmentation hypothesis based on the results that the proportionality coefficient of the 2/3 power law changes discontinuously with each new â??strokeâ?, and (2) the segmentation hypothesis inferred from the observation of piecewise planar endpoint trajectories of 3D drawing movements. In two experiments human subjects performed a set of elliptical and figure-8 patterns of different sizes and orientations using their whole arm in 3D. The kinematic characteristics of the endpoint trajectories and the seven joint angles of the arm were analyzed. While the endpoint trajectories produced similar segmentation features as reported in the literature, analyses of the joint angles show no obvious segmentation but rather continuous oscillatory patterns. By approximating the joint angle data of human subjects with sinusoidal trajectories, and by implementing this model on a 7-degree-of-freedom anthropomorphic robot arm, it is shown that such a continuous movement strategy can produce exactly the same features as observed by the above segmentation hypotheses. The origin of this apparent segmentation of endpoint trajectories is traced back to the nonlinear transformations of the forward kinematics of human arms. The presented results demonstrate that principles of discrete movement generation may not be reconciled with those of rhythmic movement as easily as has been previously suggested, while the generalization of nonlinear pattern generators to arm movements can offer an interesting alternative to approach the question of units of action.

am

link (url) [BibTex]

1999


link (url) [BibTex]


no image
Two-dimensional fine particle positioning using a piezoresistive cantilever as a micro/nano-manipulator

Sitti, M., Hashimoto, H.

In Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on, 4, pages: 2729-2735, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Teleoperated nano scale object manipulation

Sitti, M., Hashimoto, H.

Recent Advances on Mechatronics, pages: 322-335, Singapore: Springer-Verlag, 1999 (article)

pi

[BibTex]

[BibTex]


Thumb xl teaser 1
Accurate Vision-based Manipulation through Contact Reasoning

Kloss, A., Bauza, M., Wu, J., Tenenbaum, J. B., Rodriguez, A., Bohg, J.

In International Conference on Robotics and Automation, May (inproceedings) Submitted

Abstract
Planning contact interactions is one of the core challenges of many robotic tasks. Optimizing contact locations while taking dynamics into account is computationally costly and in only partially observed environments, executing contact-based tasks often suffers from low accuracy. We present an approach that addresses these two challenges for the problem of vision-based manipulation. First, we propose to disentangle contact from motion optimization. Thereby, we improve planning efficiency by focusing computation on promising contact locations. Second, we use a hybrid approach for perception and state estimation that combines neural networks with a physically meaningful state representation. In simulation and real-world experiments on the task of planar pushing, we show that our method is more efficient and achieves a higher manipulation accuracy than previous vision-based approaches.

am

[BibTex]


[BibTex]


no image
In vivo diabetic wound healing with nanofibrous scaffolds modified with gentamicin and recombinant human epidermal growth factor

Dwivedi, C., Pandey, I., Pandey, H., Patil, S., Mishra, S. B., Pandey, A. C., Zamboni, P., Ramteke, P. W., Singh, A. V.

Journal of Biomedical Materials Research Part A, 106(3):641-651, March (article)

Abstract
Abstract Diabetic wounds are susceptible to microbial infection. The treatment of these wounds requires a higher payload of growth factors. With this in mind, the strategy for this study was to utilize a novel payload comprising of Eudragit RL/RS 100 nanofibers carrying the bacterial inhibitor gentamicin sulfate (GS) in concert with recombinant human epidermal growth factor (rhEGF); an accelerator of wound healing. GS containing Eudragit was electrospun to yield nanofiber scaffolds, which were further modified by covalent immobilization of rhEGF to their surface. This novel fabricated nanoscaffold was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. The thermal behavior of the nanoscaffold was determined using thermogravimetric analysis and differential scanning calorimetry. In the in vitro antibacterial assays, the nanoscaffolds exhibited comparable antibacterial activity to pure gentemicin powder. In vivo work using female C57/BL6 mice, the nanoscaffolds induced faster wound healing activity in dorsal wounds compared to the control. The paradigm in this study presents a robust in vivo model to enhance the applicability of drug delivery systems in wound healing applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 641–651, 2018.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl gpcr cons
Classified Regression for Bayesian Optimization: Robot Learning with Unknown Penalties

Marco, A., Baumann, D., Hennig, P., Trimpe, S.

Submitted to Journal (under review) (article)

Abstract
Learning robot controllers by minimizing a black-box objective cost using Bayesian optimization (BO) can be time-consuming and challenging. It is very often the case that some roll-outs result in failure behaviors, causing premature experiment detention. In such cases, the designer is forced to decide on heuristic cost penalties because the acquired data is often scarce, or not comparable with that of the stable policies. To overcome this, we propose a Bayesian model that captures exactly what we know about the cost of unstable controllers prior to data collection: Nothing, except that it should be a somewhat large number. The resulting Bayesian model, approximated with a Gaussian process, predicts high cost values in regions where failures are likely to occur. In this way, the model guides the BO exploration toward regions of stability. We demonstrate the benefits of the proposed model in several illustrative and statistical synthetic benchmarks, and also in experiments on a real robotic platform. In addition, we propose and experimentally validate a new BO method to account for unknown constraints. Such method is an extension of Max-Value Entropy Search, a recent information-theoretic method, to solve unconstrained global optimization problems.

PDF link (url) [BibTex]


no image
test jon
(book)

[BibTex]


no image
test
(article)

[BibTex]

[BibTex]


no image
Geometric Image Synthesis

Alhaija, H. A., Mustikovela, S. K., Geiger, A., Rother, C.

(conference)

avg

Project Page [BibTex]

Project Page [BibTex]


no image
Robotics Research

Tong, Chi Hay, Furgale, Paul, Barfoot, Timothy D, Guizilini, Vitor, Ramos, Fabio, Chen, Yushan, T\uumová, Jana, Ulusoy, Alphan, Belta, Calin, Tenorth, Moritz, others

(article)

pi

[BibTex]

[BibTex]