Header logo is


2013


no image
Virtual Robotization of the Human Body via Data-Driven Vibrotactile Feedback

Kurihara, Y., Hachisu, T., Kuchenbecker, K. J., Kajimoto, H.

In Proc. International Conference on Advances in Computer Entertainment Technology (ACE), 8253, pages: 109-122, Lecture Notes in Computer Science, Springer, Enschede, Netherlands, 2013, Oral presentation given by Kurihara. Best Paper Silver Award (inproceedings)

hi

[BibTex]

2013


[BibTex]


Thumb xl embs2013
Mixing Decoded Cursor Velocity and Position from an Offline Kalman Filter Improves Cursor Control in People with Tetraplegia

Homer, M., Harrison, M., Black, M. J., Perge, J., Cash, S., Friehs, G., Hochberg, L.

In 6th International IEEE EMBS Conference on Neural Engineering, pages: 715-718, San Diego, November 2013 (inproceedings)

Abstract
Kalman filtering is a common method to decode neural signals from the motor cortex. In clinical research investigating the use of intracortical brain computer interfaces (iBCIs), the technique enabled people with tetraplegia to control assistive devices such as a computer or robotic arm directly from their neural activity. For reaching movements, the Kalman filter typically estimates the instantaneous endpoint velocity of the control device. Here, we analyzed attempted arm/hand movements by people with tetraplegia to control a cursor on a computer screen to reach several circular targets. A standard velocity Kalman filter is enhanced to additionally decode for the cursor’s position. We then mix decoded velocity and position to generate cursor movement commands. We analyzed data, offline, from two participants across six sessions. Root mean squared error between the actual and estimated cursor trajectory improved by 12.2 ±10.5% (pairwise t-test, p<0.05) as compared to a standard velocity Kalman filter. The findings suggest that simultaneously decoding for intended velocity and position and using them both to generate movement commands can improve the performance of iBCIs.

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
Jointonation: Robotization of the Human Body by Vibrotactile Feedback

Kurihara, Y., Hachisu, T., Kuchenbecker, K. J., Kajimoto, H.

Emerging Technologies Demonstration with Talk at ACM SIGGRAPH Asia, Hong Kong, November 2013, Hands-on demonstration given by Kurihara, Takei, and Nakai. Best Demonstration Award as voted by the Program Committee (misc)

hi

[BibTex]

[BibTex]


Thumb xl pic cviu13
Markov Random Field Modeling, Inference & Learning in Computer Vision & Image Understanding: A Survey

Wang, C., Komodakis, N., Paragios, N.

Computer Vision and Image Understanding (CVIU), 117(11):1610-1627, November 2013 (article)

Abstract
In this paper, we present a comprehensive survey of Markov Random Fields (MRFs) in computer vision and image understanding, with respect to the modeling, the inference and the learning. While MRFs were introduced into the computer vision field about two decades ago, they started to become a ubiquitous tool for solving visual perception problems around the turn of the millennium following the emergence of efficient inference methods. During the past decade, a variety of MRF models as well as inference and learning methods have been developed for addressing numerous low, mid and high-level vision problems. While most of the literature concerns pairwise MRFs, in recent years we have also witnessed significant progress in higher-order MRFs, which substantially enhances the expressiveness of graph-based models and expands the domain of solvable problems. This survey provides a compact and informative summary of the major literature in this research topic.

ps

Publishers site pdf [BibTex]

Publishers site pdf [BibTex]


no image
Camera-specific Image Denoising

Schober, M.

Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)

ei pn

PDF [BibTex]

PDF [BibTex]


Thumb xl multi modal
3-D Object Reconstruction of Symmetric Objects by Fusing Visual and Tactile Sensing

Illonen, J., Bohg, J., Kyrki, V.

The International Journal of Robotics Research, 33(2):321-341, Sage, October 2013 (article)

Abstract
In this work, we propose to reconstruct a complete 3-D model of an unknown object by fusion of visual and tactile information while the object is grasped. Assuming the object is symmetric, a first hypothesis of its complete 3-D shape is generated. A grasp is executed on the object with a robotic manipulator equipped with tactile sensors. Given the detected contacts between the fingers and the object, the initial full object model including the symmetry parameters can be refined. This refined model will then allow the planning of more complex manipulation tasks. The main contribution of this work is an optimal estimation approach for the fusion of visual and tactile data applying the constraint of object symmetry. The fusion is formulated as a state estimation problem and solved with an iterative extended Kalman filter. The approach is validated experimentally using both artificial and real data from two different robotic platforms.

am

Web DOI Project Page [BibTex]

Web DOI Project Page [BibTex]


no image
Multi-robot cooperative spherical-object tracking in 3D space based on particle filters

Ahmad, A., Lima, P.

Robotics and Autonomous Systems, 61(10):1084-1093, October 2013 (article)

Abstract
This article presents a cooperative approach for tracking a moving spherical object in 3D space by a team of mobile robots equipped with sensors, in a highly dynamic environment. The tracker’s core is a particle filter, modified to handle, within a single unified framework, the problem of complete or partial occlusion for some of the involved mobile sensors, as well as inconsistent estimates in the global frame among sensors, due to observation errors and/or self-localization uncertainty. We present results supporting our approach by applying it to a team of real soccer robots tracking a soccer ball, including comparison with ground truth.

ps

DOI [BibTex]

DOI [BibTex]


no image
Multi-Robot Cooperative Object Tracking Based on Particle Filters

Ahmad, A., Lima, P.

In 61(10):1084-1093, 5th European Conference on Mobile Robots (ECMR), October 2013 (inproceedings)

Abstract
This article presents a cooperative approach for tracking a moving object by a team of mobile robots equipped with sensors, in a highly dynamic environment. The tracker’s core is a particle filter, modified to handle, within a single unified framework, the problem of complete or partial occlusion for some of the involved mobile sensors, as well as inconsistent estimates in the global frame among sensors, due to observation errors and/or self-localization uncertainty. We present results supporting our approach by applying it to a team of real soccer robots tracking a soccer ball.

ps

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl implied flow whue
Puppet Flow

Zuffi, S., Black, M. J.

(7), Max Planck Institute for Intelligent Systems, October 2013 (techreport)

Abstract
We introduce Puppet Flow (PF), a layered model describing the optical flow of a person in a video sequence. We consider video frames composed by two layers: a foreground layer corresponding to a person, and background. We model the background as an affine flow field. The foreground layer, being a moving person, requires reasoning about the articulated nature of the human body. We thus represent the foreground layer with the Deformable Structures model (DS), a parametrized 2D part-based human body representation. We call the motion field defined through articulated motion and deformation of the DS model, a Puppet Flow. By exploiting the DS representation, Puppet Flow is a parametrized optical flow field, where parameters are the person's pose, gender and body shape.

ps

pdf Project Page Project Page [BibTex]

pdf Project Page Project Page [BibTex]


no image
D2.1.4 RoCKIn@Work - Innovation in Mobile Industrial Manipulation Competition Design, Rule Book, and Scenario Construction

Ahmad, A., Awaad, I., Amigoni, F., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schneider, S.

(FP7-ICT-601012 Revision 0.7), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, sep 2013 (techreport)

Abstract
RoCKIn is a EU-funded project aiming to foster scientific progress and innovation in cognitive systems and robotics through the design and implementation of competitions. An additional objective of RoCKIn is to increase public awareness of the current state-of-the-art in robotics in Europe and to demonstrate the innovation potential of robotics applications for solving societal challenges and improving the competitiveness of Europe in the global markets. In order to achieve these objectives, RoCKIn develops two competitions, one for domestic service robots (RoCKIn@Home) and one for industrial robots in factories (RoCKIn-@Work). These competitions are designed around challenges that are based on easy-to-communicate and convincing user stories, which catch the interest of both the general public and the scientifc community. The latter is in particular interested in solving open scientific challenges and to thoroughly assess, compare, and evaluate the developed approaches with competing ones. To allow this to happen, the competitions are designed to meet the requirements of benchmarking procedures and good experimental methods. The integration of benchmarking technology with the competition concept is one of the main objectives of RoCKIn. This document describes the first version of the RoCKIn@Work competition, which will be held for the first time in 2014. The first chapter of the document gives a brief overview, outlining the purpose and objective of the competition, the methodological approach taken by the RoCKIn project, the user story upon which the competition is based, the structure and organization of the competition, and the commonalities and differences with the RoboCup@Work competition, which served as inspiration for RoCKIn@Work. The second chapter provides details on the user story and analyzes the scientific and technical challenges it poses. Consecutive chapters detail the competition scenario, the competition design, and the organization of the competition. The appendices contain information on a library of functionalities, which we believe are needed, or at least useful, for building competition entries, details on the scenario construction, and a detailed account of the benchmarking infrastructure needed — and provided by RoCKIn.

ps

[BibTex]

[BibTex]


no image
D2.1.1 RoCKIn@Home - A Competition for Domestic Service Robots Competition Design, Rule Book, and Scenario Construction

Ahmad, A., Awaad, I., Amigoni, F., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schneider, S.

(FP7-ICT-601012 Revision 0.7), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, sep 2013 (techreport)

Abstract
RoCKIn is a EU-funded project aiming to foster scientific progress and innovation in cognitive systems and robotics through the design and implementation of competitions. An additional objective of RoCKIn is to increase public awareness of the current state-of-the-art in robotics in Europe and to demonstrate the innovation potential of robotics applications for solving societal challenges and improving the competitiveness of Europe in the global markets. In order to achieve these objectives, RoCKIn develops two competitions, one for domestic service robots (RoCKIn@Home) and one for industrial robots in factories (RoCKIn-@Work). These competitions are designed around challenges that are based on easy-to-communicate and convincing user stories, which catch the interest of both the general public and the scientifc community. The latter is in particular interested in solving open scientific challenges and to thoroughly assess, compare, and evaluate the developed approaches with competing ones. To allow this to happen, the competitions are designed to meet the requirements of benchmarking procedures and good experimental methods. The integration of benchmarking technology with the competition concept is one of the main objectives of RoCKIn. This document describes the first version of the RoCKIn@Home competition, which will be held for the first time in 2014. The first chapter of the document gives a brief overview, outlining the purpose and objective of the competition, the methodological approach taken by the RoCKIn project, the user story upon which the competition is based, the structure and organization of the competition, and the commonalities and differences with the RoboCup@Home competition, which served as inspiration for RoCKIn@Home. The second chapter provides details on the user story and analyzes the scientific and technical challenges it poses. Consecutive chapters detail the competition scenario, the competition design, and the organization of the competition. The appendices contain information on a library of functionalities, which we believe are needed, or at least useful, for building competition entries, details on the scenario construction, and a detailed account of the benchmarking infrastructure needed — and provided by RoCKIn.

ps

[BibTex]

[BibTex]


no image
Sisyphus cooling in a continuously loaded trap

Volchkov, V., Rührig, J., Pfau, T., Griesmaier, A.

New Journal of Physics, 15, pages: 093012, IOP Publishing and Deutsche Physikalische Gesellschaft, September 2013 (article)

Abstract
We demonstrate continuous Sisyphus cooling combined with a continuous loading mechanism used to efficiently slow down and accumulate chromium atoms from a guided beam. While the loading itself is based on a single slowing step, applying a radio frequency field forces the atoms to repeat this step many times resulting in a so-called Sisyphus cooling. This extension allows efficient loading and cooling of atoms from a wide range of initial beam conditions. We study the interplay of the continuous loading and simultaneous Sisyphus cooling in different density regimes. In the case of a low density flux we observe a differential gain in phase-space density of nine orders of magnitude. This makes the presented scheme an ideal tool for reaching collisional densities enabling evaporative cooling—in spite of unfavourable initial conditions.

sf

DOI [BibTex]

DOI [BibTex]


Thumb xl bmvc teaser
Distribution Fields with Adaptive Kernels for Large Displacement Image Alignment

Mears, B., Sevilla-Lara, L., Learned-Miller, E.

In British Machine Vision Conference (BMVC) , BMVA Press, September 2013 (inproceedings)

Abstract
While region-based image alignment algorithms that use gradient descent can achieve sub-pixel accuracy when they converge, their convergence depends on the smoothness of the image intensity values. Image smoothness is often enforced through the use of multiscale approaches in which images are smoothed and downsampled. Yet, these approaches typically use fixed smoothing parameters which may be appropriate for some images but not for others. Even for a particular image, the optimal smoothing parameters may depend on the magnitude of the transformation. When the transformation is large, the image should be smoothed more than when the transformation is small. Further, with gradient-based approaches, the optimal smoothing parameters may change with each iteration as the algorithm proceeds towards convergence. We address convergence issues related to the choice of smoothing parameters by deriving a Gauss-Newton gradient descent algorithm based on distribution fields (DFs) and proposing a method to dynamically select smoothing parameters at each iteration. DF and DF-like representations have previously been used in the context of tracking. In this work we incorporate DFs into a full affine model for region-based alignment and simultaneously search over parameterized sets of geometric and photometric transforms. We use a probabilistic interpretation of DFs to select smoothing parameters at each step in the optimization and show that this results in improved convergence rates.

ps

pdf code [BibTex]

pdf code [BibTex]


Thumb xl teaser mrg
Metric Regression Forests for Human Pose Estimation

(Best Science Paper Award)

Pons-Moll, G., Taylor, J., Shotton, J., Hertzmann, A., Fitzgibbon, A.

In British Machine Vision Conference (BMVC) , BMVA Press, September 2013 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent App. 14/016,651 (misc)

pi

[BibTex]

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent App. 14/016,683 (misc)

pi

[BibTex]

[BibTex]


Thumb xl ijrr
Vision meets Robotics: The KITTI Dataset

Geiger, A., Lenz, P., Stiller, C., Urtasun, R.

International Journal of Robotics Research, 32(11):1231 - 1237 , Sage Publishing, September 2013 (article)

Abstract
We present a novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research. In total, we recorded 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation system. The scenarios are diverse, capturing real-world traffic situations and range from freeways over rural areas to inner-city scenes with many static and dynamic objects. Our data is calibrated, synchronized and timestamped, and we provide the rectified and raw image sequences. Our dataset also contains object labels in the form of 3D tracklets and we provide online benchmarks for stereo, optical flow, object detection and other tasks. This paper describes our recording platform, the data format and the utilities that we provide.

avg ps

pdf DOI [BibTex]

pdf DOI [BibTex]


no image
Vibrotactile Display: Perception, Technology, and Applications

Choi, S., Kuchenbecker, K. J.

Proceedings of the IEEE, 101(9):2093-2104, sep 2013 (article)

hi

[BibTex]

[BibTex]


no image
Virtual Robotization of the Human Body Using Vibration Recording, Modeling and Rendering

Kurihara, Y., Hachisu, T., Kuchenbecker, K. J., Kajimoto, H.

In Proc. Virtual Reality Society of Japan Annual Conference, Osaka, Japan, sep 2013, Paper written in Japanese. Presentation given by Kurihara (inproceedings)

hi

[BibTex]

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent 8,524,092 (misc)

pi

[BibTex]

[BibTex]


Thumb xl imgf0006
Human Pose Calculation from Optical Flow Data

Black, M., Loper, M., Romero, J., Zuffi, S.

European Patent Application EP 2843621 , August 2013 (patent)

ps

Google Patents [BibTex]

Google Patents [BibTex]


Thumb xl cover3
Statistics on Manifolds with Applications to Modeling Shape Deformations

Freifeld, O.

Brown University, August 2013 (phdthesis)

Abstract
Statistical models of non-rigid deformable shape have wide application in many fi elds, including computer vision, computer graphics, and biometry. We show that shape deformations are well represented through nonlinear manifolds that are also matrix Lie groups. These pattern-theoretic representations lead to several advantages over other alternatives, including a principled measure of shape dissimilarity and a natural way to compose deformations. Moreover, they enable building models using statistics on manifolds. Consequently, such models are superior to those based on Euclidean representations. We demonstrate this by modeling 2D and 3D human body shape. Shape deformations are only one example of manifold-valued data. More generally, in many computer-vision and machine-learning problems, nonlinear manifold representations arise naturally and provide a powerful alternative to Euclidean representations. Statistics is traditionally concerned with data in a Euclidean space, relying on the linear structure and the distances associated with such a space; this renders it inappropriate for nonlinear spaces. Statistics can, however, be generalized to nonlinear manifolds. Moreover, by respecting the underlying geometry, the statistical models result in not only more e ffective analysis but also consistent synthesis. We go beyond previous work on statistics on manifolds by showing how, even on these curved spaces, problems related to modeling a class from scarce data can be dealt with by leveraging information from related classes residing in di fferent regions of the space. We show the usefulness of our approach with 3D shape deformations. To summarize our main contributions: 1) We de fine a new 2D articulated model -- more expressive than traditional ones -- of deformable human shape that factors body-shape, pose, and camera variations. Its high realism is obtained from training data generated from a detailed 3D model. 2) We defi ne a new manifold-based representation of 3D shape deformations that yields statistical deformable-template models that are better than the current state-of-the- art. 3) We generalize a transfer learning idea from Euclidean spaces to Riemannian manifolds. This work demonstrates the value of modeling manifold-valued data and their statistics explicitly on the manifold. Specifi cally, the methods here provide new tools for shape analysis.

ps

pdf Project Page [BibTex]


no image
D1.1 Specification of General Features of Scenarios and Robots for Benchmarking Through Competitions

Ahmad, A., Awaad, I., Amigoni, F., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Fontana, G., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schiaffonati, V., Schneider, S.

(FP7-ICT-601012 Revision 1.0), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, July 2013 (techreport)

Abstract
RoCKIn is a EU-funded project aiming to foster scientific progress and innovation in cognitive systems and robotics through the design and implementation of competitions. An additional objective of RoCKIn is to increase public awareness of the current state-of-the-art in robotics and the innovation potential of robotics applications. From these objectives several requirements for the work performed in RoCKIn can be derived: The RoCKIn competitions must start from convincing, easy-to-communicate user stories, that catch the attention of relevant stakeholders, the media, and the crowd. The user stories play the role of a mid- to long-term vision for a competition. Preferably, the user stories address economic, societal, or environmental problems. The RoCKIn competitions must pose open scientific challenges of interest to sufficiently many researchers to attract existing and new teams of robotics researchers for participation in the competition. The competitions need to promise some suitable reward, such as recognition in the scientific community, publicity for a team’s work, awards, or prize money, to justify the effort a team puts into the development of a competition entry. The competitions should be designed in such a way that they reward general, scientifically sound solutions to the challenge problems; such general solutions should score better than approaches that work only in narrowly defined contexts and are considred over-engineered. The challenges motivating the RoCKIn competitions must be broken down into suitable intermediate goals that can be reached with a limited team effort until the next competition and the project duration. The RoCKIn competitions must be well-defined and well-designed, with comprehensive rule books and instructions for the participants in order to guarantee a fair competition. The RoCKIn competitions must integrate competitions with benchmarking in order to provide comprehensive feedback for the teams about the suitability of particular functional modules, their overall architecture, and system integration. This document takes the first steps towards the RoCKIn goals. After outlining our approach, we present several user stories for further discussion within the community. The main objectives of this document are to identify and document relevant scenario features and the tasks and functionalities subject for benchmarking in the competitions.

ps

[BibTex]

[BibTex]


no image
Studying large-scale brain networks: electrical stimulation and neural-event-triggered fMRI

Logothetis, N., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H., Besserve, M., Oeltermann, A.

Twenty-Second Annual Computational Neuroscience Meeting (CNS*2013), July 2013, journal = {BMC Neuroscience}, year = {2013}, month = {7}, volume = {14}, number = {Supplement 1}, pages = {A1}, (talk)

ei

Web [BibTex]

Web [BibTex]


no image
SocRob-MSL 2013 Team Description Paper for Middle Sized League

Messias, J., Ahmad, A., Reis, J., Serafim, M., Lima, P.

17th Annual RoboCup International Symposium 2013, July 2013 (techreport)

Abstract
This paper describes the status of the SocRob MSL robotic soccer team as required by the RoboCup 2013 qualification procedures. The team’s latest scientific and technical developments, since its last participation in RoboCup MSL, include further advances in cooperative perception; novel communication methods for distributed robotics; progressive deployment of the ROS middleware; improved localization through feature tracking and Mixture MCL; novel planning methods based on Petri nets and decision-theoretic frameworks; and hardware developments in ball-handling/kicking devices.

ps

link (url) [BibTex]

link (url) [BibTex]


Thumb xl teaser
Visualizing dimensionality reduction of systems biology data

Lehrmann, A. M., Huber, M., Polatkan, A. C., Pritzkau, A., Nieselt, K.

Data Mining and Knowledge Discovery, 1(27):146-165, Springer, July 2013 (article)

ps

pdf SpRay [BibTex]

pdf SpRay [BibTex]


Thumb xl thumb
Poselet conditioned pictorial structures

Pishchulin, L., Andriluka, M., Gehler, P., Schiele, B.

In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages: 588 - 595, IEEE, Portland, OR, Conference on Computer Vision and Pattern Recognition (CVRP), June 2013 (inproceedings)

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl thumb
Occlusion Patterns for Object Class Detection

Pepik, B., Stark, M., Gehler, P., Schiele, B.

In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, OR, June 2013 (inproceedings)

Abstract
Despite the success of recent object class recognition systems, the long-standing problem of partial occlusion re- mains a major challenge, and a principled solution is yet to be found. In this paper we leave the beaten path of meth- ods that treat occlusion as just another source of noise – instead, we include the occluder itself into the modelling, by mining distinctive, reoccurring occlusion patterns from annotated training data. These patterns are then used as training data for dedicated detectors of varying sophistica- tion. In particular, we evaluate and compare models that range from standard object class detectors to hierarchical, part-based representations of occluder/occludee pairs. In an extensive evaluation we derive insights that can aid fur- ther developments in tackling the occlusion challenge.

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl lost
Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization

(CVPR13 Best Paper Runner-Up)

Brubaker, M. A., Geiger, A., Urtasun, R.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2013), pages: 3057-3064, IEEE, Portland, OR, June 2013 (inproceedings)

Abstract
In this paper we propose an affordable solution to self- localization, which utilizes visual odometry and road maps as the only inputs. To this end, we present a probabilis- tic model as well as an efficient approximate inference al- gorithm, which is able to utilize distributed computation to meet the real-time requirements of autonomous systems. Because of the probabilistic nature of the model we are able to cope with uncertainty due to noisy visual odometry and inherent ambiguities in the map ( e.g ., in a Manhattan world). By exploiting freely available, community devel- oped maps and visual odometry measurements, we are able to localize a vehicle up to 3m after only a few seconds of driving on maps which contain more than 2,150km of driv- able roads.

avg ps

pdf supplementary project page [BibTex]

pdf supplementary project page [BibTex]


Thumb xl poseregression
Human Pose Estimation using Body Parts Dependent Joint Regressors

Dantone, M., Gall, J., Leistner, C., van Gool, L.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3041-3048, IEEE, Portland, OR, USA, June 2013 (inproceedings)

Abstract
In this work, we address the problem of estimating 2d human pose from still images. Recent methods that rely on discriminatively trained deformable parts organized in a tree model have shown to be very successful in solving this task. Within such a pictorial structure framework, we address the problem of obtaining good part templates by proposing novel, non-linear joint regressors. In particular, we employ two-layered random forests as joint regressors. The first layer acts as a discriminative, independent body part classifier. The second layer takes the estimated class distributions of the first one into account and is thereby able to predict joint locations by modeling the interdependence and co-occurrence of the parts. This results in a pose estimation framework that takes dependencies between body parts already for joint localization into account and is thus able to circumvent typical ambiguities of tree structures, such as for legs and arms. In the experiments, we demonstrate that our body parts dependent joint regressors achieve a higher joint localization accuracy than tree-based state-of-the-art methods.

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl deqingcvpr13b
A fully-connected layered model of foreground and background flow

Sun, D., Wulff, J., Sudderth, E., Pfister, H., Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, (CVPR 2013), pages: 2451-2458, Portland, OR, June 2013 (inproceedings)

Abstract
Layered models allow scene segmentation and motion estimation to be formulated together and to inform one another. Traditional layered motion methods, however, employ fairly weak models of scene structure, relying on locally connected Ising/Potts models which have limited ability to capture long-range correlations in natural scenes. To address this, we formulate a fully-connected layered model that enables global reasoning about the complicated segmentations of real objects. Optimization with fully-connected graphical models is challenging, and our inference algorithm leverages recent work on efficient mean field updates for fully-connected conditional random fields. These methods can be implemented efficiently using high-dimensional Gaussian filtering. We combine these ideas with a layered flow model, and find that the long-range connections greatly improve segmentation into figure-ground layers when compared with locally connected MRF models. Experiments on several benchmark datasets show that the method can recover fine structures and large occlusion regions, with good flow accuracy and much lower computational cost than previous locally-connected layered models.

ps

pdf Supplemental Material Project Page Project Page [BibTex]

pdf Supplemental Material Project Page Project Page [BibTex]


no image
Correlation of Simultaneously Acquired Diffusion-Weighted Imaging and 2-Deoxy-[18F] fluoro-2-D-glucose Positron Emission Tomography of Pulmonary Lesions in a Dedicated Whole-Body Magnetic Resonance/Positron Emission Tomography System

Schmidt, H., Brendle, C., Schraml, C., Martirosian, P., Bezrukov, I., Hetzel, J., Müller, M., Sauter, A., Claussen, C., Pfannenberg, C., Schwenzer, N.

Investigative Radiology, 48(5):247-255, May 2013 (article)

ei

Web [BibTex]

Web [BibTex]


Thumb xl submodularity nips
Learning and Optimization with Submodular Functions

Sankaran, B., Ghazvininejad, M., He, X., Kale, D., Cohen, L.

ArXiv, May 2013 (techreport)

Abstract
In many naturally occurring optimization problems one needs to ensure that the definition of the optimization problem lends itself to solutions that are tractable to compute. In cases where exact solutions cannot be computed tractably, it is beneficial to have strong guarantees on the tractable approximate solutions. In order operate under these criterion most optimization problems are cast under the umbrella of convexity or submodularity. In this report we will study design and optimization over a common class of functions called submodular functions. Set functions, and specifically submodular set functions, characterize a wide variety of naturally occurring optimization problems, and the property of submodularity of set functions has deep theoretical consequences with wide ranging applications. Informally, the property of submodularity of set functions concerns the intuitive principle of diminishing returns. This property states that adding an element to a smaller set has more value than adding it to a larger set. Common examples of submodular monotone functions are entropies, concave functions of cardinality, and matroid rank functions; non-monotone examples include graph cuts, network flows, and mutual information. In this paper we will review the formal definition of submodularity; the optimization of submodular functions, both maximization and minimization; and finally discuss some applications in relation to learning and reasoning using submodular functions.

am

arxiv link (url) [BibTex]

arxiv link (url) [BibTex]


Thumb xl featureextraction
Hypothesis Testing Framework for Active Object Detection

Sankaran, B., Atanasov, N., Le Ny, J., Koletschka, T., Pappas, G., Daniilidis, K.

In IEEE International Conference on Robotics and Automation (ICRA), May 2013, clmc (inproceedings)

Abstract
One of the central problems in computer vision is the detection of semantically important objects and the estimation of their pose. Most of the work in object detection has been based on single image processing and its performance is limited by occlusions and ambiguity in appearance and geometry. This paper proposes an active approach to object detection by controlling the point of view of a mobile depth camera. When an initial static detection phase identifies an object of interest, several hypotheses are made about its class and orientation. The sensor then plans a sequence of view-points, which balances the amount of energy used to move with the chance of identifying the correct hypothesis. We formulate an active M-ary hypothesis testing problem, which includes sensor mobility, and solve it using a point-based approximate POMDP algorithm. The validity of our approach is verified through simulation and experiments with real scenes captured by a kinect sensor. The results suggest a significant improvement over static object detection.

am

pdf [BibTex]

pdf [BibTex]


no image
Replacing Causal Faithfulness with Algorithmic Independence of Conditionals

Lemeire, J., Janzing, D.

Minds and Machines, 23(2):227-249, May 2013 (article)

Abstract
Independence of Conditionals (IC) has recently been proposed as a basic rule for causal structure learning. If a Bayesian network represents the causal structure, its Conditional Probability Distributions (CPDs) should be algorithmically independent. In this paper we compare IC with causal faithfulness (FF), stating that only those conditional independences that are implied by the causal Markov condition hold true. The latter is a basic postulate in common approaches to causal structure learning. The common spirit of FF and IC is to reject causal graphs for which the joint distribution looks ‘non-generic’. The difference lies in the notion of genericity: FF sometimes rejects models just because one of the CPDs is simple, for instance if the CPD describes a deterministic relation. IC does not behave in this undesirable way. It only rejects a model when there is a non-generic relation between different CPDs although each CPD looks generic when considered separately. Moreover, it detects relations between CPDs that cannot be captured by conditional independences. IC therefore helps in distinguishing causal graphs that induce the same conditional independences (i.e., they belong to the same Markov equivalence class). The usual justification for FF implicitly assumes a prior that is a probability density on the parameter space. IC can be justified by Solomonoff’s universal prior, assigning non-zero probability to those points in parameter space that have a finite description. In this way, it favours simple CPDs, and therefore respects Occam’s razor. Since Kolmogorov complexity is uncomputable, IC is not directly applicable in practice. We argue that it is nevertheless helpful, since it has already served as inspiration and justification for novel causal inference algorithms.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Thumb xl screen shot 2017 06 14 at 3.09.16 pm
Benefits of an active spine supported bounding locomotion with a small compliant quadruped robot

Khoramshahi, M., Spröwitz, A., Tuleu, A., Ahmadabadi, M. N., Ijspeert, A. J.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages: 3329-3334, May 2013 (inproceedings)

Abstract
We studied the effect of the control of an active spine versus a fixed spine, on a quadruped robot running in bound gait. Active spine supported actuation led to faster locomotion, with less foot sliding on the ground, and a higher stability to go straight forward. However, we did no observe an improvement of cost of transport of the spine-actuated, faster robot system compared to the rigid spine.

dlg

Youtube DOI Project Page [BibTex]

Youtube DOI Project Page [BibTex]


no image
Virtual Alteration of Body Material by Reality-Based Periodic Vibrotactile Feedback

Kurihara, Y., Hachisu, T., Sato, M., Fukushima, S., Kuchenbecker, K. J., Kajimoto, H.

In Proc. JSME Robotics and Mechatronics Conference (ROBOMEC), Tsukuba, Japan, May 2013, Paper written in Japanese. Poster presentation given by {Kurihara} (inproceedings)

hi

[BibTex]

[BibTex]


no image
Perception-driven multi-robot formation control

Ahmad, A., Nascimento, T., Conceicao, A., Moreira, A., Lima, P.

In pages: 1851-1856, IEEE, IEEE International Conference on Robotics and Automation (ICRA), May 2013 (inproceedings)

Abstract
Maximizing the performance of cooperative perception of a tracked target by a team of mobile robots while maintaining the team's formation is the core problem addressed in this work. We propose a solution by integrating the controller and the estimator modules in a formation control loop. The controller module is a distributed non-linear model predictive controller and the estimator module is based on a particle filter for cooperative target tracking. A formal description of the integration followed by simulation and real robot results on two different teams of homogeneous robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target's cooperative estimate while complying with the performance criteria such as keeping a pre-set distance between the team-mates and/or the target and obstacle avoidance.

ps

DOI [BibTex]

DOI [BibTex]


no image
Cooperative Robot Localization and Target Tracking based on Least Squares Minimization

Ahmad, A., Tipaldi, G., Lima, P., Burgard, W.

In pages: 5696-5701, IEEE, IEEE International Conference on Robotics and Automation (ICRA), May 2013 (inproceedings)

Abstract
In this paper we address the problem of cooperative localization and target tracking with a team of moving robots. We model the problem as a least squares minimization problem and show that this problem can be efficiently solved using sparse optimization methods. To achieve this, we represent the problem as a graph, where the nodes are robot and target poses at individual time-steps and the edges are their relative measurements. Static landmarks at known position are used to define a common reference frame for the robots and the targets. In this way, we mitigate the risk of using measurements and state estimates more than once, since all the relative measurements are i.i.d. and no marginalization is performed. Experiments performed using a set of real robots show higher accuracy compared to a Kalman filter.

ps

DOI [BibTex]

DOI [BibTex]


no image
The Design and Field Observation of a Haptic Notification System for Oral Presentations

Tam, D., MacLean, K. E., McGrenere, J., Kuchenbecker, K. J.

In Proc. SIGCHI Conference on Human Factors in Computing Systems, pages: 1689-1698, Paris, France, May 2013, Oral presentation given by Tam (inproceedings)

hi

[BibTex]

[BibTex]


Thumb xl jmiv2012 mut
Unscented Kalman Filtering on Riemannian Manifolds

Soren Hauberg, Francois Lauze, Kim S. Pedersen

Journal of Mathematical Imaging and Vision, 46(1):103-120, Springer Netherlands, May 2013 (article)

ps

Publishers site PDF [BibTex]

Publishers site PDF [BibTex]


no image
Using Robotic Exploratory Procedures to Learn the Meaning of Haptic Adjectives

Chu, V., McMahon, I., Riano, L., McDonald, C. G., He, Q., Perez-Tejada, J. M., Arrigo, M., Fitter, N., Nappo, J., Darrell, T., Kuchenbecker, K. J.

In Proc. IEEE International Conference on Robotics and Automation, pages: 3048-3055, Karlsruhe, Germany, May 2013, Oral presentation given by Chu. Best Cognitive Robotics Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Instrument contact vibrations are a construct-valid measure of technical skill in Fundamentals of Laparoscopic Surgery Training Tasks

Gomez, E. D., Aggarwal, R., McMahan, W., Koch, E., Hashimoto, D. A., Darzi, A., Murayama, K. M., Dumon, K. R., Williams, N. N., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Association for Surgical Education, Orlando, Florida, USA, 2013, Oral presentation given by Gomez (inproceedings)

hi

[BibTex]

[BibTex]


no image
Dynamic Simulation of Tool-Mediated Texture Interaction

McDonald, C. G., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 307-312, Daejeon, South Korea, April 2013, Oral presentation given by McDonald (inproceedings)

hi

[BibTex]

[BibTex]


no image
ROS Open-source Audio Recognizer: ROAR Environmental Sound Detection Tools for Robot Programming

Romano, J. M., Brindza, J. P., Kuchenbecker, K. J.

Autonomous Robots, 34(3):207-215, April 2013 (article)

hi

[BibTex]

[BibTex]


Thumb xl phd
Probabilistic Models for 3D Urban Scene Understanding from Movable Platforms

Geiger, A.

Karlsruhe Institute of Technology, Karlsruhe Institute of Technology, April 2013 (phdthesis)

Abstract
Visual 3D scene understanding is an important component in autonomous driving and robot navigation. Intelligent vehicles for example often base their decisions on observations obtained from video cameras as they are cheap and easy to employ. Inner-city intersections represent an interesting but also very challenging scenario in this context: The road layout may be very complex and observations are often noisy or even missing due to heavy occlusions. While Highway navigation and autonomous driving on simple and annotated intersections have already been demonstrated successfully, understanding and navigating general inner-city crossings with little prior knowledge remains an unsolved problem. This thesis is a contribution to understanding multi-object traffic scenes from video sequences. All data is provided by a camera system which is mounted on top of the autonomous driving platform AnnieWAY. The proposed probabilistic generative model reasons jointly about the 3D scene layout as well as the 3D location and orientation of objects in the scene. In particular, the scene topology, geometry as well as traffic activities are inferred from short video sequences. The model takes advantage of monocular information in the form of vehicle tracklets, vanishing lines and semantic labels. Additionally, the benefit of stereo features such as 3D scene flow and occupancy grids is investigated. Motivated by the impressive driving capabilities of humans, no further information such as GPS, lidar, radar or map knowledge is required. Experiments conducted on 113 representative intersection sequences show that the developed approach successfully infers the correct layout in a variety of difficult scenarios. To evaluate the importance of each feature cue, experiments with different feature combinations are conducted. Additionally, the proposed method is shown to improve object detection and object orientation estimation performance.

avg ps

pdf [BibTex]

pdf [BibTex]


no image
Generating Haptic Texture Models From Unconstrained Tool-Surface Interactions

Culbertson, H., Unwin, J., Goodman, B. E., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 295-300, Daejeon, South Korea, April 2013, Oral presentation given by Culbertson. Finalist for Best Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Data-Driven Modeling and Rendering of Isotropic Textures

Culbertson, H., McDonald, C. G., Goodman, B. E., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE World Haptics Conference, Daejeon, South Korea, April 2013, Best Demonstration Award (by audience vote) (misc)

hi

[BibTex]

[BibTex]


no image
A practical System for Recording Instrument Contacts and Collisions During Transoral Robotic Surgery

Gomez, E. D., Weinstein, G. S., O’Malley, J. B. W., McMahan, W., Chen, L., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Triological Society, Orlando, Florida, USA, April 2013, Poster presentation given by Gomez (inproceedings)

hi

[BibTex]

[BibTex]


no image
Adding Haptics to Robotic Surgery

J. Kuchenbecker, K., Brzezinski, A., D. Gomez, E., Gosselin, M., Hui, J., Koch, E., Koehn, J., McMahan, W., Mahajan, K., Nappo, J., Shah, N.

Learning Center Station at SAGES (Society of American Gastrointestinal and Endoscopic Surgeons) Annual Meeting, Baltimore, Maryland, USA, April 2013 (misc)

hi

[BibTex]

[BibTex]