Header logo is


2008


no image
Example-Based Learning for Single-Image Super-Resolution

Kim, K., Kwon, Y.

In DAGM 2008, pages: 456-463, (Editors: Rigoll, G. ), Springer, Berlin, Germany, 30th Annual Symposium of the German Association for Pattern Recognition, June 2008 (inproceedings)

Abstract
This paper proposes a regression-based method for single-image super-resolution. Kernel ridge regression (KRR) is used to estimate the high-frequency details of the underlying high-resolution image. A sparse solution of KRR is found by combining the ideas of kernel matching pursuit and gradient descent, which allows time-complexity to be kept to a moderate level. To resolve the problem of ringing artifacts occurring due to the regularization effect, the regression results are post-processed using a prior model of a generic image class. Experimental results demonstrate the effectiveness of the proposed method.

ei

PDF DOI [BibTex]

2008


PDF DOI [BibTex]


no image
A Multiple Kernel Learning Approach to Joint Multi-Class Object Detection

Lampert, C., Blaschko, M.

In DAGM 2008, pages: 31-40, (Editors: Rigoll, G. ), Springer, Berlin, Germany, 30th Annual Symposium of the German Association for Pattern Recognition, June 2008, Main Award DAGM 2008 (inproceedings)

Abstract
Most current methods for multi-class object classification and localization work as independent 1-vs-rest classifiers. They decide whether and where an object is visible in an image purely on a per-class basis. Joint learning of more than one object class would generally be preferable, since this would allow the use of contextual information such as co-occurrence between classes. However, this approach is usually not employed because of its computational cost. In this paper we propose a method to combine the efficiency of single class localization with a subsequent decision process that works jointly for all given object classes. By following a multiple kernel learning (MKL) approach, we automatically obtain a sparse dependency graph of relevant object classes on which to base the decision. Experiments on the PASCAL VOC 2006 and 2007 datasets show that the subsequent joint decision step clearly improves the accuracy compared to single class detection.

ei

PDF ZIP Web DOI [BibTex]

PDF ZIP Web DOI [BibTex]


no image
Natural Evolution Strategies

Wierstra, D., Schaul, T., Peters, J., Schmidhuber, J.

In CEC 2008, pages: 3381-3387, IEEE, Piscataway, NJ, USA, IEEE Congress on Evolutionary Computation, June 2008 (inproceedings)

Abstract
This paper presents natural evolution strategies (NES), a novel algorithm for performing real-valued dasiablack boxpsila function optimization: optimizing an unknown objective function where algorithm-selected function measurements constitute the only information accessible to the method. Natural evolution strategies search the fitness landscape using a multivariate normal distribution with a self-adapting mutation matrix to generate correlated mutations in promising regions. NES shares this property with covariance matrix adaption (CMA), an evolution strategy (ES) which has been shown to perform well on a variety of high-precision optimization tasks. The natural evolution strategies algorithm, however, is simpler, less ad-hoc and more principled. Self-adaptation of the mutation matrix is derived using a Monte Carlo estimate of the natural gradient towards better expected fitness. By following the natural gradient instead of the dasiavanillapsila gradient, we can ensure efficient update steps while preventing early convergence due to overly greedy updates, resulting in reduced sensitivity to local suboptima. We show NES has competitive performance with CMA on unimodal tasks, while outperforming it on several multimodal tasks that are rich in deceptive local optima.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Partitioning of Image Datasets using Discriminative Context Information

Lampert, CH.

In CVPR 2008, pages: 1-8, IEEE Computer Society, Los Alamitos, CA, USA, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2008 (inproceedings)

Abstract
We propose a new method to partition an unlabeled dataset, called Discriminative Context Partitioning (DCP). It is motivated by the idea of splitting the dataset based only on how well the resulting parts can be separated from a context class of disjoint data points. This is in contrast to typical clustering techniques like K-means that are based on a generative model by implicitly or explicitly searching for modes in the distribution of samples. The discriminative criterion in DCP avoids the problems that density based methods have when the a priori assumption of multimodality is violated, when the number of samples becomes small in relation to the dimensionality of the feature space, or if the cluster sizes are strongly unbalanced. We formulate DCP‘s separation property as a large-margin criterion, and show how the resulting optimization problem can be solved efficiently. Experiments on the MNIST and USPS datasets of handwritten digits and on a subset of the Caltech256 dataset show that, given a suitable context, DCP can achieve good results even in situation where density-based clustering techniques fail.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Bayesian online multi-task learning using regularization networks

Pillonetto, G., Dinuzzo, F., De Nicolao, G.

In pages: 4517-4522, IEEE Service Center, Piscataway, NJ, USA, 2008 American Control Conference (ACC), June 2008 (inproceedings)

Abstract
Recently, standard single-task kernel methods have been extended to the case of multi-task learning under the framework of regularization. Experimental results have shown that such an approach can perform much better than single-task techniques, especially when few examples per task are available. However, a possible drawback may be computational complexity. For instance, when using regularization networks, complexity scales as the cube of the overall number of data associated with all the tasks. In this paper, an efficient computational scheme is derived for a widely applied class of multi-task kernels. More precisely, a quadratic loss is assumed and the multi-task kernel is the sum of a common term and a task-specific one. The proposed algorithm performs online learning recursively updating the estimates as new data become available. The learning problem is formulated in a Bayesian setting. The optimal estimates are obtained by solving a sequence of subproblems which involve projection of random variables onto suitable subspaces. The algorithm is tested on a simulated data set.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Correlational Spectral Clustering

Blaschko, MB., Lampert, CH.

In CVPR 2008, pages: 1-8, IEEE Computer Society, Los Alamitos, CA, USA, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2008 (inproceedings)

Abstract
We present a new method for spectral clustering with paired data based on kernel canonical correlation analysis, called correlational spectral clustering. Paired data are common in real world data sources, such as images with text captions. Traditional spectral clustering algorithms either assume that data can be represented by a single similarity measure, or by co-occurrence matrices that are then used in biclustering. In contrast, the proposed method uses separate similarity measures for each data representation, and allows for projection of previously unseen data that are only observed in one representation (e.g. images but not text). We show that this algorithm generalizes traditional spectral clustering algorithms and show consistent empirical improvement over spectral clustering on a variety of datasets of images with associated text.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Approximate Dynamic Programming with Gaussian Processes

Deisenroth, M., Peters, J., Rasmussen, C.

In ACC 2008, pages: 4480-4485, IEEE Service Center, Piscataway, NJ, USA, 2008 American Control Conference, June 2008 (inproceedings)

Abstract
In general, it is difficult to determine an optimal closed-loop policy in nonlinear control problems with continuous-valued state and control domains. Hence, approximations are often inevitable. The standard method of discretizing states and controls suffers from the curse of dimensionality and strongly depends on the chosen temporal sampling rate. In this paper, we introduce Gaussian process dynamic programming (GPDP) and determine an approximate globally optimal closed-loop policy. In GPDP, value functions in the Bellman recursion of the dynamic programming algorithm are modeled using Gaussian processes. GPDP returns an optimal statefeedback for a finite set of states. Based on these outcomes, we learn a possibly discontinuous closed-loop policy on the entire state space by switching between two independently trained Gaussian processes. A binary classifier selects one Gaussian process to predict the optimal control signal. We show that GPDP is able to yield an almost optimal solution to an LQ problem using few sample points. Moreover, we successfully apply GPDP to the underpowered pendulum swing up, a complex nonlinear control problem.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Beyond Sliding Windows: Object Localization by Efficient Subwindow Search

Lampert, C., Blaschko, M., Hofmann, T.

In CVPR 2008, pages: 1-8, IEEE Computer Society, Los Alamitos, CA, USA, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2008, Best paper award (inproceedings)

Abstract
Most successful object recognition systems rely on binary classification, deciding only if an object is present or not, but not providing information on the actual object location. To perform localization, one can take a sliding window approach, but this strongly increases the computational cost, because the classifier function has to be evaluated over a large set of candidate subwindows. In this paper, we propose a simple yet powerful branchand- bound scheme that allows efficient maximization of a large class of classifier functions over all possible subimages. It converges to a globally optimal solution typically in sublinear time. We show how our method is applicable to different object detection and retrieval scenarios. The achieved speedup allows the use of classifiers for localization that formerly were considered too slow for this task, such as SVMs with a spatial pyramid kernel or nearest neighbor classifiers based on the 2-distance. We demonstrate state-of-the-art performance of the resulting systems on the UIUC Cars dataset, the PASCAL VOC 2006 dataset and in the PASCAL VOC 2007 competition.

ei

PDF PDF Web DOI [BibTex]

PDF PDF Web DOI [BibTex]


no image
Computed Torque Control with Nonparametric Regression Models

Nguyen-Tuong, D., Seeger, M., Peters, J.

In ACC 2008, pages: 212-217, IEEE Service Center, Piscataway, NJ, USA, 2008 American Control Conference, June 2008 (inproceedings)

Abstract
Computed torque control allows the design of considerably more precise, energy-efficient and compliant controls for robots. However, the major obstacle is the requirement of an accurate model for torque generation, which cannot be obtained in some cases using rigid-body formulations due to unmodeled nonlinearities, such as complex friction or actuator dynamics. In such cases, models approximated from robot data present an appealing alternative. In this paper, we compare two nonparametric regression methods for model approximation, i.e., locally weighted projection regression (LWPR) and Gaussian process regression (GPR). While locally weighted regression was employed for real-time model estimation in learning adaptive control, Gaussian process regression has not been used in control to-date due to high computational requirements. The comparison includes the assessment of model approximation for both regression methods using data originated from SARCOS robot arm, as well as an evaluation of the robot tracking p erformance in computed torque control employing the approximated models. Our results show that GPR can be applied for real-time control achieving higher accuracy. However, for the online learning LWPR is superior by reason of lower computational requirements.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Multi-Classification by Categorical Features via Clustering

Seldin, Y., Tishby, N.

In In the proceedings of the 25th International Conference on Machine Learning (ICML 2008), pages: 920-927, 25th International Conference on Machine Learning (ICML), June 2008 (inproceedings)

Abstract
We derive a generalization bound for multi-classification schemes based on grid clustering in categorical parameter product spaces. Grid clustering partitions the parameter space in the form of a Cartesian product of partitions for each of the parameters. The derived bound provides a means to evaluate clustering solutions in terms of the generalization power of a built-on classifier. For classification based on a single feature the bound serves to find a globally optimal classification rule. Comparison of the generalization power of individual features can then be used for feature ranking. Our experiments show that in this role the bound is much more precise than mutual information or normalized correlation indices.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Kernel Test of Nonlinear Granger Causality

Sun, X.

In Proceedings of the Workshop on Inference and Estimation in Probabilistic Time-Series Models, pages: 79-89, (Editors: Barber, D. , A. T. Cemgil, S. Chiappa), Isaac Newton Institute for Mathematical Sciences, Cambridge, United Kingdom, Workshop on Inference and Estimation in Probabilistic Time-Series Models, June 2008 (inproceedings)

Abstract
We present a novel test of nonlinear Granger causality in bivariate time series. The trace norm of conditional covariance operators is used to capture the prediction errors. Based on this measure, a subsampling-based multiple testing procedure tests the prediction improvement of one time series by the other one. The distributional properties of the resulting p-values reveal the direction of Granger causality. Encouraging results of experiments with simulated and real-world data support our approach.

ei

PDF [BibTex]

PDF [BibTex]


Thumb xl teaser
Bayesian Color Constancy Revisited

Gehler, P., Rother, C., Blake, A., Minka, T., Sharp, T.

In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, June 2008, http://dx.doi.org/10.1109/CVPR.2008.4587765 (inproceedings)

ei

website+code+data pdf [BibTex]

website+code+data pdf [BibTex]


no image
A Practice-Integrated Curriculum in Mechanical Engineering

Yim, M., Kuchenbecker, K. J., Arratia, P., Bassani, J., Fiene, J. P., Kumar, V., Lukes, J.

In Proc. ASEE Annual Conference and Exposition, Pittsburgh, Pennsylvania, USA, June 2008, Oral presentation given by Yim (inproceedings)

hi

[BibTex]

[BibTex]


no image
Real-time Learning of Resolved Velocity Control on a Mitsubishi PA-10

Peters, J., Nguyen-Tuong, D.

In ICRA 2008, pages: 2872-2877, IEEE Service Center, Piscataway, NJ, USA, 2008 IEEE International Conference on Robotics and Automation, May 2008 (inproceedings)

Abstract
Learning inverse kinematics has long been fascinating the robot learning community. While humans acquire this transformation to complicated tool spaces with ease, it is not a straightforward application for supervised learning algorithms due to non-convex learning problem. However, the key insight that the problem can be considered convex in small local regions allows the application of locally linear learning methods. Nevertheless, the local solution of the problem depends on the data distribution which can result into inconsistent global solutions with large model discontinuities. While this problem can be treated in various ways in offline learning, it poses a serious problem for online learning. Previous approaches to the real-time learning of inverse kinematics avoid this problem using smart data generation, such as the learner biasses its own solution. Such biassed solutions can result into premature convergence, and from the resulting solution it is often hard to understand what has been learned in tha t local region. This paper improves and solves this problem by presenting a learning algorithm which can deal with this inconsistency through re-weighting the data online. Furthermore, we show that our algorithms work not only in simulation, but we present real-time learning results on a physical Mitsubishi PA-10 robot arm.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
State Space Compression with Predictive Representations

Boularias, A., Izadi, M., Chaib-Draa, B.

In Flairs 2008, pages: 41-46, (Editors: Wilson, D. C., H. C. Lane), AAAI Press, Menlo Park, CA, USA, 21st International Florida Artificial Intelligence Research Society Conference, May 2008 (inproceedings)

Abstract
Current studies have demonstrated that the representational power of predictive state representations (PSRs) is at least equal to the one of partially observable Markov decision processes (POMDPs). This is while early steps in planning and generalization with PSRs suggest substantial improvements compared to POMDPs. However, lack of practical algorithms for learning these representations severely restricts their applicability. The computational inefficiency of exact PSR learning methods naturally leads to the exploration of various approximation methods that can provide a good set of core tests through less computational effort. In this paper, we address this problem in an optimization framework. In particular, our approach aims to minimize the potential error that may be caused by missing a number of core tests. We provide analysis of the error caused by this compression and present an empirical evaluation illustrating the performance of this approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.23.39 pm
Dynamic time warping for binocular hand tracking and reconstruction

Romero, J., Kragic, D., Kyrki, V., Argyros, A.

In IEEE International Conference on Robotics and Automation,ICRA, pages: 2289 -2294, May 2008 (inproceedings)

ps

Pdf [BibTex]

Pdf [BibTex]


no image
Graph Mining with Variational Dirichlet Process Mixture Models

Tsuda, K., Kurihara, K.

In SDM 2008, pages: 432-442, (Editors: Zaki, M. J.), Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 8th SIAM International Conference on Data Mining, April 2008 (inproceedings)

Abstract
Graph data such as chemical compounds and XML documents are getting more common in many application domains. A main difficulty of graph data processing lies in the intrinsic high dimensionality of graphs, namely, when a graph is represented as a binary feature vector of indicators of all possible subgraph patterns, the dimensionality gets too large for usual statistical methods. We propose a nonparametric Bayesian method for clustering graphs and selecting salient patterns at the same time. Variational inference is adopted here, because sampling is not applicable due to extremely high dimensionality. The feature set minimizing the free energy is efficiently collected with the DFS code tree, where the generation of useless subgraphs is suppressed by a tree pruning condition. In experiments, our method is compared with a simpler approach based on frequent subgraph mining, and graph kernels.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Model-Based Reinforcement Learning with Continuous States and Actions

Deisenroth, M., Rasmussen, C., Peters, J.

In ESANN 2008, pages: 19-24, (Editors: Verleysen, M. ), d-side, Evere, Belgium, European Symposium on Artificial Neural Networks, April 2008 (inproceedings)

Abstract
Finding an optimal policy in a reinforcement learning (RL) framework with continuous state and action spaces is challenging. Approximate solutions are often inevitable. GPDP is an approximate dynamic programming algorithm based on Gaussian process (GP) models for the value functions. In this paper, we extend GPDP to the case of unknown transition dynamics. After building a GP model for the transition dynamics, we apply GPDP to this model and determine a continuous-valued policy in the entire state space. We apply the resulting controller to the underpowered pendulum swing up. Moreover, we compare our results on this RL task to a nearly optimal discrete DP solution in a fully known environment.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning Inverse Dynamics: A Comparison

Nguyen-Tuong, D., Peters, J., Seeger, M., Schölkopf, B.

In Advances in Computational Intelligence and Learning: Proceedings of the European Symposium on Artificial Neural Networks, pages: 13-18, (Editors: M Verleysen), d-side, Evere, Belgium, 16th European Symposium on Artificial Neural Networks (ESANN), April 2008 (inproceedings)

Abstract
While it is well-known that model can enhance the control performance in terms of precision or energy efficiency, the practical application has often been limited by the complexities of manually obtaining sufficiently accurate models. In the past, learning has proven a viable alternative to using a combination of rigid-body dynamics and handcrafted approximations of nonlinearities. However, a major open question is what nonparametric learning method is suited best for learning dynamics? Traditionally, locally weighted projection regression (LWPR), has been the standard method as it is capable of online, real-time learning for very complex robots. However, while LWPR has had significant impact on learning in robotics, alternative nonparametric regression methods such as support vector regression (SVR) and Gaussian processes regression (GPR) offer interesting alternatives with fewer open parameters and potentially higher accuracy. In this paper, we evaluate these three alternatives for model learning. Our comparison consists out of the evaluation of learning quality for each regression method using original data from SARCOS robot arm, as well as the robot tracking performance employing learned models. The results show that GPR and SVR achieve a superior learning precision and can be applied for real-time control obtaining higher accuracy. However, for the online learning LWPR presents the better method due to its lower computational requirements.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Effects of Proprioceptive Motion Feedback on Sighted and Unsighted Control of a Virtual Hand Prosthesis

Blank, A., Okamura, A. M., Kuchenbecker, K. J.

In Proc. IEEE Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages: 141-142, Reno, Nevada, USA, March 2008, Poster presentation given by Blank (inproceedings)

hi

[BibTex]

[BibTex]


no image
The Touch Thimble: Providing Fingertip Contact Feedback During Point-Force Haptic Interaction

Kuchenbecker, K. J., Ferguson, D., Kutzer, M., Moses, M., Okamura, A. M.

In Proc. IEEE Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages: 239-246, Reno, Nevada, USA, March 2008, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Haptography: Capturing the Feel of Real Objects to Enable Authentic Haptic Rendering

Kuchenbecker, K. J.

In Proc. Haptic in Ambient Systems (HAS) Workshop, in conjunction with the First International Conference on Ambient Media and Systems, Montreal, Canada, February 2008 (inproceedings)

hi

[BibTex]

[BibTex]


Thumb xl screen shot 2018 02 03 at 5.40.07 pm
Passive compliant quadruped robot using central pattern generators for locomotion control

Rutishauser, S., Spröwitz, A., Righetti, L., Ijspeert, A. J.

In Proceedings of the 2008 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 710-715, IEEE, Scottsdale, AZ, 2008 (inproceedings)

Abstract
We present a new quadruped robot, “Cheetah”, featuring three-segment pantographic legs with passive compliant knee joints. Each leg has two degrees of freedom - knee and hip joint can be actuated using proximal mounted RC servo motors, force transmission to the knee is achieved by means of a Bowden cable mechanism. Simple electronics to command the actuators from a desktop computer have been designed in order to test the robot. A Central Pattern Generator (CPG) network has been implemented to generate different gaits. A parameter space search was performed and tested on the robot to optimize forward velocity.

dlg

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2018 02 03 at 6.34.37 pm
Graph signature for self-reconfiguration planning

Asadpour, M., Spröwitz, A., Billard, A., Dillenbourg, P., Ijspeert, A. J.

In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 863-869, IEEE, Nice, 2008 (inproceedings)

Abstract
This project incorporates modular robots as build- ing blocks for furniture that moves and self-reconfigures. The reconfiguration is done using dynamic connection / disconnection of modules and rotations of the degrees of freedom. This paper introduces a new approach to self-reconfiguration planning for modular robots based on the graph signature and the graph edit-distance. The method has been tested in simulation on two type of modules: YaMoR and M-TRAN. The simulation results shows interesting features of the approach, namely rapidly finding a near-optimal solution.

dlg

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2018 02 03 at 6.36.13 pm
An active connection mechanism for modular self-reconfigurable robotic systems based on physical latching

Spröwitz, A., Asadpour, M., Bourquin, Y., Ijspeert, A. J.

In Proceedings on the 2008 IEEE International Conference on Robotics and Automation (ICRA), 2008, pages: 3508-3513, IEEE, Pasadena, CA, 2008 (inproceedings)

Abstract
This article presents a robust and heavy duty physical latching connection mechanism, which can be actuated with DC motors to actively connect and disconnect modular robot units. The special requirements include a lightweight and simple construction providing an active, strong, hermaphrodite, completely retractable connection mechanism with a 90 degree symmetry and a no-energy consumption in the locked state. The mechanism volume is kept small to fit multiple copies into a single modular robot unit and to be used on as many faces of the robot unit as possible. This way several different lattice like modular robot structures are possible. The large selection for dock-able connection positions will likely simplify self-reconfiguration strategies. Tests with the implemented mechanism demonstrate its applicative potential for self-reconfiguring modular robots.

dlg

DOI [BibTex]

DOI [BibTex]


no image
Simulation and analysis of a passive pitch reversal flapping wing mechanism for an aerial robotic platform

Arabagi, V., Sitti, M.

In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages: 1260-1265, 2008 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Human movement generation based on convergent flow fields: A computational model and a behavioral experiment

Hoffmann, H., Schaal, S.

In Advances in Computational Motor Control VII, Symposium at the Society for Neuroscience Meeting, Washington DC, 2008, 2008, clmc (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.28.24 pm
Simultaneous Visual Recognition of Manipulation Actions and Manipulated Objects

Kjellström, H., Romero, J., Martinez, D., Kragic, D.

In European Conference on Computer Vision, ECCV, pages: 336-349, 2008 (inproceedings)

ps

Pdf [BibTex]

Pdf [BibTex]


no image
Tuning analysis of motor cortical neurons in a person with paralysis during performance of visually instructed cursor control tasks

Kim, S., Simeral, J. D., Hochberg, L. R., Truccolo, W., Donoghue, J., Friehs, G. M., Black, M. J.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

ps

[BibTex]

[BibTex]


no image
Pattern generators with sensory feedback for the control of quadruped locomotion

Righetti, L., Ijspeert, A.

In 2008 IEEE International Conference on Robotics and Automation, pages: 819-824, IEEE, Pasadena, USA, 2008 (inproceedings)

Abstract
Central pattern generators (CPGs) are becoming a popular model for the control of locomotion of legged robots. Biological CPGs are neural networks responsible for the generation of rhythmic movements, especially locomotion. In robotics, a systematic way of designing such CPGs as artificial neural networks or systems of coupled oscillators with sensory feedback inclusion is still missing. In this contribution, we present a way of designing CPGs with coupled oscillators in which we can independently control the ascending and descending phases of the oscillations (i.e. the swing and stance phases of the limbs). Using insights from dynamical system theory, we construct generic networks of oscillators able to generate several gaits under simple parameter changes. Then we introduce a systematic way of adding sensory feedback from touch sensors in the CPG such that the controller is strongly coupled with the mechanical system it controls. Finally we control three different simulated robots (iCub, Aibo and Ghostdog) using the same controller to show the effectiveness of the approach. Our simulations prove the importance of independent control of swing and stance duration. The strong mutual coupling between the CPG and the robot allows for more robust locomotion, even under non precise parameters and non-flat environment.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Experimental Study of Limit Cycle and Chaotic Controllers for the Locomotion of Centipede Robots

Matthey, L., Righetti, L., Ijspeert, A.

In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 1860-1865, IEEE, Nice, France, sep 2008 (inproceedings)

Abstract
In this contribution we present a CPG (central pattern generator) controller based on coupled Rossler systems. It is able to generate both limit cycle and chaotic behaviors through bifurcation. We develop an experimental test bench to measure quantitatively the performance of different controllers on unknown terrains of increasing difficulty. First, we show that for flat terrains, open loop limit cycle systems are the most efficient (in terms of speed of locomotion) but that they are quite sensitive to environmental changes. Second, we show that sensory feedback is a crucial addition for unknown terrains. Third, we show that the chaotic controller with sensory feedback outperforms the other controllers in very difficult terrains and actually promotes the emergence of short synchronized movement patterns. All that is done using an unified framework for the generation of limit cycle and chaotic behaviors, where a simple parameter change can switch from one behavior to the other through bifurcation. Such flexibility would allow the automatic adaptation of the robot locomotion strategy to the terrain uncertainty.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Fabrication and Characterization of Biologically Inspired Mushroom-Shaped Elastomer Microfiber Arrays

Kim, S., Sitti, M.

In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pages: 839-847, 2008 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces

Aksak, B., Murphy, M. P., Sitti, M.

In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages: 3058-3063, 2008 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Miniature Mobile Robots Down to Micron Scale

Sitti, M.

In Micro-NanoMechatronics and Human Science, 2008. MHS 2008. International Symposium on, pages: 525-525, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields

Park, D., Hoffmann, H., Pastor, P., Schaal, S.

In IEEE International Conference on Humanoid Robots, 2008., 2008, clmc (inproceedings)

am

PDF [BibTex]

PDF [BibTex]


Thumb xl screen shot 2012 06 06 at 11.28.04 am
Infinite Kernel Learning

Gehler, P., Nowozin, S.

In Proceedings of NIPS 2008 Workshop on "Kernel Learning: Automatic Selection of Optimal Kernels", 2008 (inproceedings)

ps

project page pdf [BibTex]

project page pdf [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.29.08 pm
Visual Recognition of Grasps for Human-to-Robot Mapping

Kjellström, H., Romero, J., Kragic, D.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pages: 3192-3199, 2008 (inproceedings)

ps

Pdf [BibTex]

Pdf [BibTex]


no image
More than two years of intracortically-based cursor control via a neural interface system

Hochberg, L. R., Simeral, J. D., Kim, S., Stein, J., Friehs, G. M., Black, M. J., Donoghue, J. P.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

ps

[BibTex]

[BibTex]


no image
Wetting and premelting of triple junctions and grain boundaries in the Al-Zn alloys

Straumal, B., Kogtenkova, O., Protasova, S., Mazilkin, A., Zieba, P., Czeppe, T., Wojewoda-Budka, J., Faryna, M.

In 495, pages: 126-131, Alicante, Spain, 2008 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
The dual role of uncertainty in force field learning

Mistry, M., Theodorou, E., Hoffmann, H., Schaal, S.

In Abstracts of the Eighteenth Annual Meeting of Neural Control of Movement (NCM), Naples, Florida, April 29-May 4, 2008, clmc (inproceedings)

Abstract
Force field experiments have been a successful paradigm for studying the principles of planning, execution, and learning in human arm movements. Subjects have been shown to cope with the disturbances generated by force fields by learning internal models of the underlying dynamics to predict disturbance effects or by increasing arm impedance (via co-contraction) if a predictive approach becomes infeasible. Several studies have addressed the issue uncertainty in force field learning. Scheidt et al. demonstrated that subjects exposed to a viscous force field of fixed structure but varying strength (randomly changing from trial to trial), learn to adapt to the mean disturbance, regardless of the statistical distribution. Takahashi et al. additionally show a decrease in strength of after-effects after learning in the randomly varying environment. Thus they suggest that the nervous system adopts a dual strategy: learning an internal model of the mean of the random environment, while simultaneously increasing arm impedance to minimize the consequence of errors. In this study, we examine what role variance plays in the learning of uncertain force fields. We use a 7 degree-of-freedom exoskeleton robot as a manipulandum (Sarcos Master Arm, Sarcos, Inc.), and apply a 3D viscous force field of fixed structure and strength randomly selected from trial to trial. Additionally, in separate blocks of trials, we alter the variance of the randomly selected strength multiplier (while keeping a constant mean). In each block, after sufficient learning has occurred, we apply catch trials with no force field and measure the strength of after-effects. As expected in higher variance cases, results show increasingly smaller levels of after-effects as the variance is increased, thus implying subjects choose the robust strategy of increasing arm impedance to cope with higher levels of uncertainty. Interestingly, however, subjects show an increase in after-effect strength with a small amount of variance as compared to the deterministic (zero variance) case. This result implies that a small amount of variability aides in internal model formation, presumably a consequence of the additional amount of exploration conducted in the workspace of the task.

am

[BibTex]

[BibTex]


no image
Dynamic movement primitives for movement generation motivated by convergent force fields in frog

Hoffmann, H., Pastor, P., Schaal, S.

In Adaptive Motion of Animals and Machines (AMAM), 2008, clmc (inproceedings)

am

PDF [BibTex]

PDF [BibTex]


no image
Polymeric Micro/Nanofiber Manufacturing and Mechanical Characterization

Nain, A. S., Sitti, M., Amon, C.

In ASME 2008 International Mechanical Engineering Congress and Exposition, pages: 295-303, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces

Floyd, S., Pawashe, C., Sitti, M.

In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages: 419-424, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Fabrication of bio-inspired elastomer nanofiber arrays with spatulate tips using notching effect

Kim, S., Sitti, M., Jang, J., Thomas, E. L.

In Nanotechnology, 2008. NANO’08. 8th IEEE Conference on, pages: 780-782, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A motorized anchoring mechanism for a tethered capsule robot using fibrillar adhesives for interventions in the esophagus

Glass, P., Cheung, E., Wang, H., Appasamy, R., Sitti, M.

In Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on, pages: 758-764, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Emergence of Interaction Among Adaptive Agents

Martius, G., Nolfi, S., Herrmann, J. M.

In Proc. From Animals to Animats 10 (SAB 2008), 5040, pages: 457-466, LNCS, Springer, 2008 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


no image
In-lane Localization in Road Networks using Curbs Detected in Omnidirectional Height Images

Stueckler, J., Schulz, H., Behnke, S.

In Proceedings of Robotik 2008, 2008 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Decoding of reach and grasp from MI population spiking activity using a low-dimensional model of hand and arm posture

Yadollahpour, P., Shakhnarovich, G., Vargas-Irwin, C., Donoghue, J. P., Black, M. J.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

ps

[BibTex]

[BibTex]


no image
A Dynamical System for Online Learning of Periodic Movements of Unknown Waveform and Frequency

Gams, A., Righetti, L., Ijspeert, A., Lenarčič, J.

In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 85-90, IEEE, Scottsdale, USA, October 2008 (inproceedings)

Abstract
The paper presents a two-layered system for learning and encoding a periodic signal onto a limit cycle without any knowledge on the waveform and the frequency of the signal, and without any signal processing. The first dynamical system is responsible for extracting the main frequency of the input signal. It is based on adaptive frequency phase oscillators in a feedback structure, enabling us to extract separate frequency components without any signal processing, as all of the processing is embedded in the dynamics of the system itself. The second dynamical system is responsible for learning of the waveform. It has a built-in learning algorithm based on locally weighted regression, which adjusts the weights according to the amplitude of the input signal. By combining the output of the first system with the input of the second system we can rapidly teach new trajectories to robots. The systems works online for any periodic signal and can be applied in parallel to multiple dimensions. Furthermore, it can adapt to changes in frequency and shape, e.g. to non-stationary signals, and is computationally inexpensive. Results using simulated and hand-generated input signals, along with applying the algorithm to a HOAP-2 humanoid robot are presented.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Passive compliant quadruped robot using central pattern generators for locomotion control

Rutishauser, S., Sproewitz, A., Righetti, L., Ijspeert, A.

In 2008 IEEE International Conference on Biomedical Robotics and Biomechatronics, pages: 710-715, IEEE, Scottsdale, USA, October 2008 (inproceedings)

Abstract
We present a new quadruped robot, ldquoCheetahrdquo, featuring three-segment pantographic legs with passive compliant knee joints. Each leg has two degrees of freedom - knee and hip joint can be actuated using proximal mounted RC servo motors, force transmission to the knee is achieved by means of a bowden cable mechanism. Simple electronics to command the actuators from a desktop computer have been designed in order to test the robot. A Central Pattern Generator (CPG) network has been implemented to generate different gaits. A parameter space search was performed and tested on the robot to optimize forward velocity.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]