Header logo is


2007


no image
Brain-Computer Interfaces for Communication in Paralysis: A Clinical Experimental Approach

Hinterberger, T., Nijboer, F., Kübler, A., Matuz, T., Furdea, A., Mochty, U., Jordan, M., Lal, T., Hill, J., Mellinger, J., Bensch, M., Tangermann, M., Widman, G., Elger, C., Rosenstiel, W., Schölkopf, B., Birbaumer, N.

In Toward Brain-Computer Interfacing, pages: 43-64, Neural Information Processing, (Editors: G. Dornhege and J del R Millán and T Hinterberger and DJ McFarland and K-R Müller), MIT Press, Cambridge, MA, USA, September 2007 (inbook)

ei

PDF Web [BibTex]

2007


PDF Web [BibTex]


no image
Probabilistic Structure Calculation

Rieping, W., Habeck, M., Nilges, M.

In Structure and Biophysics: New Technologies for Current Challenges in Biology and Beyond, pages: 81-98, NATO Security through Science Series, (Editors: Puglisi, J. D.), Springer, Berlin, Germany, March 2007 (inbook)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
On the Pre-Image Problem in Kernel Methods

BakIr, G., Schölkopf, B., Weston, J.

In Kernel Methods in Bioengineering, Signal and Image Processing, pages: 284-302, (Editors: G Camps-Valls and JL Rojo-Álvarez and M Martínez-Ramón), Idea Group Publishing, Hershey, PA, USA, January 2007 (inbook)

Abstract
In this chapter we are concerned with the problem of reconstructing patterns from their representation in feature space, known as the pre-image problem. We review existing algorithms and propose a learning based approach. All algorithms are discussed regarding their usability and complexity and evaluated on an image denoising application.

ei

DOI [BibTex]

DOI [BibTex]


no image
Some comments on ν-SVM

Dinuzzo, F., De Nicolao, G.

In A tribute to Antonio Lepschy, pages: -, (Editors: Picci, G. , M. E. Valcher), Edizione Libreria Progetto, Padova, Italy, 2007 (inbook)

ei

[BibTex]

[BibTex]


Probabilistically modeling and decoding neural population activity in motor cortex
Probabilistically modeling and decoding neural population activity in motor cortex

Black, M. J., Donoghue, J. P.

In Toward Brain-Computer Interfacing, pages: 147-159, (Editors: Dornhege, G. and del R. Millan, J. and Hinterberger, T. and McFarland, D. and Muller, K.-R.), MIT Press, London, 2007 (incollection)

ps

pdf [BibTex]

pdf [BibTex]


no image
Dynamics systems vs. optimal control ? a unifying view

Schaal, S, Mohajerian, P., Ijspeert, A.

In Progress in Brain Research, (165):425-445, 2007, clmc (inbook)

Abstract
In the past, computational motor control has been approached from at least two major frameworks: the dynamic systems approach and the viewpoint of optimal control. The dynamic system approach emphasizes motor control as a process of self-organization between an animal and its environment. Nonlinear differential equations that can model entrainment and synchronization behavior are among the most favorable tools of dynamic systems modelers. In contrast, optimal control approaches view motor control as the evolutionary or development result of a nervous system that tries to optimize rather general organizational principles, e.g., energy consumption or accurate task achievement. Optimal control theory is usually employed to develop appropriate theories. Interestingly, there is rather little interaction between dynamic systems and optimal control modelers as the two approaches follow rather different philosophies and are often viewed as diametrically opposing. In this paper, we develop a computational approach to motor control that offers a unifying modeling framework for both dynamic systems and optimal control approaches. In discussions of several behavioral experiments and some theoretical and robotics studies, we demonstrate how our computational ideas allow both the representation of self-organizing processes and the optimization of movement based on reward criteria. Our modeling framework is rather simple and general, and opens opportunities to revisit many previous modeling results from this novel unifying view.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Bacteria integrated swimming microrobots

Behkam, B., Sitti, M.

In 50 years of artificial intelligence, pages: 154-163, Springer Berlin Heidelberg, 2007 (incollection)

pi

[BibTex]

[BibTex]


no image
Micromagnetism-microstructure relations and the hysteresis loop

Goll, D.

In Handbook of Magnetism and Advanced Magnetic Materials. Vol. 2: Micromagnetism, pages: 1023-1058, John Wiley & Sons Ltd., Chichester, UK, 2007 (incollection)

mms

[BibTex]

[BibTex]


no image
Synchrotron radiation techniques based on X-ray magnetic circular dichroism

Schütz, G., Goering, E., Stoll, H.

In Handbook of Magnetism and Advanced Magnetic Materials. Vol. 3: Materials Novel Techniques for Characterizing and Preparing Samples, pages: 1311-1363, John Wiley & Sons Ltd., Chichester, UK, 2007 (incollection)

mms

[BibTex]

[BibTex]


no image
Micromagnetism-microstructure relations and the hysteresis loop

Goll, D.

In Handbook of Magnetism and Advanced Magnetic Materials. Vol. 2: Micromagnetism, pages: 1023-1058, John Wiley & Sons Ltd., Chichester, UK, 2007 (incollection)

mms

[BibTex]

[BibTex]


no image
Dissipative magnetization dynamics close to the adiabatic regime

Fähnle, M., Steiauf, D.

In Handbook of Magnetism and Advanced Magnetic Materials. Vol. 1: Fundamental and Theory, pages: 282-302, John Wiley & Sons Ltd., Chichester, UK, 2007 (incollection)

mms

[BibTex]

[BibTex]

2003


no image
Support Vector Machines

Schölkopf, B., Smola, A.

In Handbook of Brain Theory and Neural Networks (2nd edition), pages: 1119-1125, (Editors: MA Arbib), MIT Press, Cambridge, MA, USA, 2003 (inbook)

ei

[BibTex]

2003


[BibTex]


no image
Extension of the nu-SVM range for classification

Perez-Cruz, F., Weston, J., Herrmann, D., Schölkopf, B.

In Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Vol. 190, 190, pages: 179-196, NATO Science Series III: Computer and Systems Sciences, (Editors: J Suykens and G Horvath and S Basu and C Micchelli and J Vandewalle), IOS Press, Amsterdam, 2003 (inbook)

ei

[BibTex]

[BibTex]


no image
An Introduction to Support Vector Machines

Schölkopf, B.

In Recent Advances and Trends in Nonparametric Statistics , pages: 3-17, (Editors: MG Akritas and DN Politis), Elsevier, Amsterdam, The Netherlands, 2003 (inbook)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Statistical Learning and Kernel Methods in Bioinformatics

Schölkopf, B., Guyon, I., Weston, J.

In Artificial Intelligence and Heuristic Methods in Bioinformatics, 183, pages: 1-21, 3, (Editors: P Frasconi und R Shamir), IOS Press, Amsterdam, The Netherlands, 2003 (inbook)

ei

[BibTex]

[BibTex]


no image
Statistical Learning and Kernel Methods

Navia-Vázquez, A., Schölkopf, B.

In Adaptivity and Learning—An Interdisciplinary Debate, pages: 161-186, (Editors: R.Kühn and R Menzel and W Menzel and U Ratsch and MM Richter and I-O Stamatescu), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)

ei

[BibTex]

[BibTex]


no image
A Short Introduction to Learning with Kernels

Schölkopf, B., Smola, A.

In Proceedings of the Machine Learning Summer School, Lecture Notes in Artificial Intelligence, Vol. 2600, pages: 41-64, LNAI 2600, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)

ei

[BibTex]

[BibTex]


no image
Bayesian Kernel Methods

Smola, A., Schölkopf, B.

In Advanced Lectures on Machine Learning, Machine Learning Summer School 2002, Lecture Notes in Computer Science, Vol. 2600, LNAI 2600, pages: 65-117, 0, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Germany, 2003 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
Stability of ensembles of kernel machines

Elisseeff, A., Pontil, M.

In 190, pages: 111-124, NATO Science Series III: Computer and Systems Science, (Editors: Suykens, J., G. Horvath, S. Basu, C. Micchelli and J. Vandewalle), IOS press, Netherlands, 2003 (inbook)

ei

[BibTex]

[BibTex]


no image
Investigation of the Initial Oxidation of Surfaces of Quasicrystals by High-Resolution RBS and ERDA

Plachke, D., Khellaf, A., Kurth, M., Szökefalvi-Nagy, A., Carstanjen, H. D.

In Quasicrystals: Structure and Physical Properties, pages: 598-614, Wiley-VCH GmbH & Co. KGaA, Weinheim, 2003 (incollection)

mms

[BibTex]

[BibTex]


no image
AMOC in positron and positronium chemistry

Stoll, H., Castellaz, P., Siegle, A.

In Principles and Applications of Positron and Positronium Chemistry, pages: 344-366, World Scientific Publishers, Singapore, 2003 (incollection)

mms

[BibTex]

[BibTex]

1996


no image
Künstliches Lernen

Schölkopf, B.

In Komplexe adaptive Systeme, Forum für Interdisziplinäre Forschung, 15, pages: 93-117, Forum für interdisziplinäre Forschung, (Editors: S Bornholdt and PH Feindt), Röll, Dettelbach, 1996 (inbook)

ei

[BibTex]

1996


[BibTex]


no image
From isolation to cooperation: An alternative of a system of experts

Schaal, S., Atkeson, C. G.

In Advances in Neural Information Processing Systems 8, pages: 605-611, (Editors: Touretzky, D. S.;Mozer, M. C.;Hasselmo, M. E.), MIT Press, Cambridge, MA, 1996, clmc (inbook)

Abstract
We introduce a constructive, incremental learning system for regression problems that models data by means of locally linear experts. In contrast to other approaches, the experts are trained independently and do not compete for data during learning. Only when a prediction for a query is required do the experts cooperate by blending their individual predictions. Each expert is trained by minimizing a penalized local cross validation error using second order methods. In this way, an expert is able to adjust the size and shape of the receptive field in which its predictions are valid, and also to adjust its bias on the importance of individual input dimensions. The size and shape adjustment corresponds to finding a local distance metric, while the bias adjustment accomplishes local dimensionality reduction. We derive asymptotic results for our method. In a variety of simulations we demonstrate the properties of the algorithm with respect to interference, learning speed, prediction accuracy, feature detection, and task oriented incremental learning. 

am

link (url) [BibTex]

link (url) [BibTex]