Header logo is



no image
Immersive Low-Cost Virtual Reality Treatment for Phantom Limb Pain: Evidence from Two Cases

Ambron, E., Miller, A., Kuchenbecker, K. J., Buxbaum, L. J., Coslett, H. B.

Frontiers in Neurology, 9(67):1-7, 2018 (article)

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Temporal Human Action Segmentation via Dynamic Clustering
Temporal Human Action Segmentation via Dynamic Clustering

Zhang, Y., Sun, H., Tang, S., Neumann, H.

arXiv preprint arXiv:1803.05790, 2018 (article)

Abstract
We present an effective dynamic clustering algorithm for the task of temporal human action segmentation, which has comprehensive applications such as robotics, motion analysis, and patient monitoring. Our proposed algorithm is unsupervised, fast, generic to process various types of features, and applica- ble in both the online and offline settings. We perform extensive experiments of processing data streams, and show that our algorithm achieves the state-of- the-art results for both online and offline settings.

ps

link (url) [BibTex]

link (url) [BibTex]


Motion Segmentation & Multiple Object Tracking by Correlation Co-Clustering
Motion Segmentation & Multiple Object Tracking by Correlation Co-Clustering

Keuper, M., Tang, S., Andres, B., Brox, T., Schiele, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018 (article)

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Lions and Tigers and Bears: Capturing Non-Rigid, {3D}, Articulated Shape from Images
Lions and Tigers and Bears: Capturing Non-Rigid, 3D, Articulated Shape from Images

Zuffi, S., Kanazawa, A., Black, M. J.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
Animals are widespread in nature and the analysis of their shape and motion is important in many fields and industries. Modeling 3D animal shape, however, is difficult because the 3D scanning methods used to capture human shape are not applicable to wild animals or natural settings. Consequently, we propose a method to capture the detailed 3D shape of animals from images alone. The articulated and deformable nature of animals makes this problem extremely challenging, particularly in unconstrained environments with moving and uncalibrated cameras. To make this possible, we use a strong prior model of articulated animal shape that we fit to the image data. We then deform the animal shape in a canonical reference pose such that it matches image evidence when articulated and projected into multiple images. Our method extracts significantly more 3D shape detail than previous methods and is able to model new species, including the shape of an extinct animal, using only a few video frames. Additionally, the projected 3D shapes are accurate enough to facilitate the extraction of a realistic texture map from multiple frames.

ps

pdf code/data 3D models Project Page [BibTex]

pdf code/data 3D models Project Page [BibTex]