Header logo is


2013


Thumb xl featureextraction
Hypothesis Testing Framework for Active Object Detection

Sankaran, B., Atanasov, N., Le Ny, J., Koletschka, T., Pappas, G., Daniilidis, K.

In IEEE International Conference on Robotics and Automation (ICRA), May 2013, clmc (inproceedings)

Abstract
One of the central problems in computer vision is the detection of semantically important objects and the estimation of their pose. Most of the work in object detection has been based on single image processing and its performance is limited by occlusions and ambiguity in appearance and geometry. This paper proposes an active approach to object detection by controlling the point of view of a mobile depth camera. When an initial static detection phase identifies an object of interest, several hypotheses are made about its class and orientation. The sensor then plans a sequence of view-points, which balances the amount of energy used to move with the chance of identifying the correct hypothesis. We formulate an active M-ary hypothesis testing problem, which includes sensor mobility, and solve it using a point-based approximate POMDP algorithm. The validity of our approach is verified through simulation and experiments with real scenes captured by a kinect sensor. The results suggest a significant improvement over static object detection.

am

pdf [BibTex]

2013


pdf [BibTex]


Thumb xl jmiv2012 mut
Unscented Kalman Filtering on Riemannian Manifolds

Soren Hauberg, Francois Lauze, Kim S. Pedersen

Journal of Mathematical Imaging and Vision, 46(1):103-120, Springer Netherlands, May 2013 (article)

ps

Publishers site PDF [BibTex]

Publishers site PDF [BibTex]


Thumb xl thumb hennigk2012 2
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

Journal of Machine Learning Research, 14(1):843-865, March 2013 (article)

Abstract
Four decades after their invention, quasi-Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

ei ps pn

website+code pdf link (url) [BibTex]

website+code pdf link (url) [BibTex]


no image
Action and Goal Related Decision Variables Modulate the Competition Between Multiple Potential Targets

Enachescu, V, Christopoulos, Vassilios N, Schrater, P. R., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2013), February 2013 (inproceedings)

am

[BibTex]

[BibTex]


Thumb xl secretstr
A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them

Sun, D., Roth, S., Black, M. J.

(CS-10-03), Brown University, Department of Computer Science, January 2013 (techreport)

ps

pdf [BibTex]

pdf [BibTex]


no image
The Randomized Dependence Coefficient

Lopez-Paz, D., Hennig, P., Schölkopf, B.

In Advances in Neural Information Processing Systems 26, pages: 1-9, (Editors: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

ei pn

PDF [BibTex]

PDF [BibTex]


no image
Fast Probabilistic Optimization from Noisy Gradients

Hennig, P.

In Proceedings of The 30th International Conference on Machine Learning, JMLR W&CP 28(1), pages: 62–70, (Editors: S Dasgupta and D McAllester), ICML, 2013 (inproceedings)

ei pn

PDF [BibTex]

PDF [BibTex]


Thumb xl error vs dt fine
Nonparametric dynamics estimation for time periodic systems

Klenske, E., Zeilinger, M., Schölkopf, B., Hennig, P.

In Proceedings of the 51st Annual Allerton Conference on Communication, Control, and Computing, pages: 486-493 , 2013 (inproceedings)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
The Randomized Dependence Coefficient

Lopez-Paz, D., Hennig, P., Schölkopf, B.

Neural Information Processing Systems (NIPS), 2013 (poster)

ei pn

PDF [BibTex]

PDF [BibTex]


no image
Analytical probabilistic modeling for radiation therapy treatment planning

Bangert, M., Hennig, P., Oelfke, U.

Physics in Medicine and Biology, 58(16):5401-5419, 2013 (article)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Analytical probabilistic proton dose calculation and range uncertainties

Bangert, M., Hennig, P., Oelfke, U.

In 17th International Conference on the Use of Computers in Radiation Therapy, pages: 6-11, (Editors: A. Haworth and T. Kron), ICCR, 2013 (inproceedings)

ei pn

[BibTex]

[BibTex]


no image
Animating Samples from Gaussian Distributions

Hennig, P.

(8), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2013 (techreport)

ei pn

PDF [BibTex]

PDF [BibTex]


no image
Optimal control of reaching includes kinematic constraints

Mistry, M., Theodorou, E., Schaal, S., Kawato, M.

Journal of Neurophysiology, 2013, clmc (article)

Abstract
We investigate adaptation under a reaching task with an acceleration-based force field perturbation designed to alter the nominal straight hand trajectory in a potentially benign manner:pushing the hand of course in one direction before subsequently restoring towards the target. In this particular task, an explicit strategy to reduce motor effort requires a distinct deviation from the nominal rectilinear hand trajectory. Rather, our results display a clear directional preference during learning, as subjects adapted perturbed curved trajectories towards their initial baselines. We model this behavior using the framework of stochastic optimal control theory and an objective function that trades-of the discordant requirements of 1) target accuracy, 2) motor effort, and 3) desired trajectory. Our work addresses the underlying objective of a reaching movement, and we suggest that robustness, particularly against internal model uncertainly, is as essential to the reaching task as terminal accuracy and energy effciency.

am

PDF [BibTex]

PDF [BibTex]


Thumb xl thumbiccvsilvia
Estimating Human Pose with Flowing Puppets

Zuffi, S., Romero, J., Schmid, C., Black, M. J.

In IEEE International Conference on Computer Vision (ICCV), pages: 3312-3319, 2013 (inproceedings)

Abstract
We address the problem of upper-body human pose estimation in uncontrolled monocular video sequences, without manual initialization. Most current methods focus on isolated video frames and often fail to correctly localize arms and hands. Inferring pose over a video sequence is advantageous because poses of people in adjacent frames exhibit properties of smooth variation due to the nature of human and camera motion. To exploit this, previous methods have used prior knowledge about distinctive actions or generic temporal priors combined with static image likelihoods to track people in motion. Here we take a different approach based on a simple observation: Information about how a person moves from frame to frame is present in the optical flow field. We develop an approach for tracking articulated motions that "links" articulated shape models of people in adjacent frames trough the dense optical flow. Key to this approach is a 2D shape model of the body that we use to compute how the body moves over time. The resulting "flowing puppets" provide a way of integrating image evidence across frames to improve pose inference. We apply our method on a challenging dataset of TV video sequences and show state-of-the-art performance.

ps

pdf code data DOI Project Page Project Page Project Page [BibTex]

pdf code data DOI Project Page Project Page Project Page [BibTex]


Thumb xl screen shot 2015 08 23 at 00.29.36
Fusing visual and tactile sensing for 3-D object reconstruction while grasping

Ilonen, J., Bohg, J., Kyrki, V.

In IEEE International Conference on Robotics and Automation (ICRA), pages: 3547-3554, 2013 (inproceedings)

Abstract
In this work, we propose to reconstruct a complete 3-D model of an unknown object by fusion of visual and tactile information while the object is grasped. Assuming the object is symmetric, a first hypothesis of its complete 3-D shape is generated from a single view. This initial model is used to plan a grasp on the object which is then executed with a robotic manipulator equipped with tactile sensors. Given the detected contacts between the fingers and the object, the full object model including the symmetry parameters can be refined. This refined model will then allow the planning of more complex manipulation tasks. The main contribution of this work is an optimal estimation approach for the fusion of visual and tactile data applying the constraint of object symmetry. The fusion is formulated as a state estimation problem and solved with an iterative extended Kalman filter. The approach is validated experimentally using both artificial and real data from two different robotic platforms.

am

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl gcpr thumbnail 200 112
A Comparison of Directional Distances for Hand Pose Estimation

Tzionas, D., Gall, J.

In German Conference on Pattern Recognition (GCPR), 8142, pages: 131-141, Lecture Notes in Computer Science, (Editors: Weickert, Joachim and Hein, Matthias and Schiele, Bernt), Springer, 2013 (inproceedings)

Abstract
Benchmarking methods for 3d hand tracking is still an open problem due to the difficulty of acquiring ground truth data. We introduce a new dataset and benchmarking protocol that is insensitive to the accumulative error of other protocols. To this end, we create testing frame pairs of increasing difficulty and measure the pose estimation error separately for each of them. This approach gives new insights and allows to accurately study the performance of each feature or method without employing a full tracking pipeline. Following this protocol, we evaluate various directional distances in the context of silhouette-based 3d hand tracking, expressed as special cases of a generalized Chamfer distance form. An appropriate parameter setup is proposed for each of them, and a comparative study reveals the best performing method in this context.

ps

pdf Supplementary Project Page link (url) DOI Project Page [BibTex]

pdf Supplementary Project Page link (url) DOI Project Page [BibTex]


no image
Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors

Ijspeert, A., Nakanishi, J., Pastor, P., Hoffmann, H., Schaal, S.

Neural Computation, (25):328-373, 2013, clmc (article)

Abstract
Nonlinear dynamical systems have been used in many disciplines to model complex behaviors, including biological motor control, robotics, perception, economics, traffic prediction, and neuroscience. While often the unexpected emergent behavior of nonlinear systems is the focus of investigations, it is of equal importance to create goal-directed behavior (e.g., stable locomotion from a system of coupled oscillators under perceptual guidance). Modeling goal-directed behavior with nonlinear systems is, however, rather difficult due to the parameter sensitivity of these systems, their complex phase transitions in response to subtle parameter changes, and the difficulty of analyzing and predicting their long-term behavior; intuition and time-consuming parameter tuning play a major role. This letter presents and reviews dynamical movement primitives, a line of research for modeling attractor behaviors of autonomous nonlinear dynamical systems with the help of statistical learning techniques. The essence of our approach is to start with a simple dynamical system, such as a set of linear differential equations, and transform those into a weakly nonlinear system with prescribed attractor dynamics by meansof a learnable autonomous forcing term. Both point attractors and limit cycle attractors of almost arbitrary complexity can be generated. We explain the design principle of our approach and evaluate its properties in several example applications in motor control and robotics.

am

link (url) [BibTex]

link (url) [BibTex]


no image
AGILITY – Dynamic Full Body Locomotion and Manipulation with Autonomous Legged Robots

Hutter, M., Bloesch, M., Buchli, J., Semini, C., Bazeille, S., Righetti, L., Bohg, J.

In 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages: 1-4, IEEE, Linköping, Sweden, 2013 (inproceedings)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Objective Functions for Manipulation

Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In 2013 IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
We present an approach to learning objective functions for robotic manipulation based on inverse reinforcement learning. Our path integral inverse reinforcement learning algorithm can deal with high-dimensional continuous state-action spaces, and only requires local optimality of demonstrated trajectories. We use L 1 regularization in order to achieve feature selection, and propose an efficient algorithm to minimize the resulting convex objective function. We demonstrate our approach by applying it to two core problems in robotic manipulation. First, we learn a cost function for redundancy resolution in inverse kinematics. Second, we use our method to learn a cost function over trajectories, which is then used in optimization-based motion planning for grasping and manipulation tasks. Experimental results show that our method outperforms previous algorithms in high-dimensional settings.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Using Torque Redundancy to Optimize Contact Forces in Legged Robots

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.

In Redundancy in Robot Manipulators and Multi-Robot Systems, 57, pages: 35-51, Lecture Notes in Electrical Engineering, Springer Berlin Heidelberg, 2013 (incollection)

Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In the following, we present an inverse dynamics controller that exploits torque redundancy to directly and explicitly minimize any combination of linear and quadratic costs in the contact constraints and in the commands. Such a result is particularly relevant for legged robots as it allows to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, it can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The proposed controller is very simple and computationally efficient, and most importantly it can greatly improve the performance of legged locomotion on difficult terrains as can be seen in the experimental results.

am mg

link (url) [BibTex]

link (url) [BibTex]


Thumb xl pic cdc iccv13
A Generic Deformation Model for Dense Non-Rigid Surface Registration: a Higher-Order MRF-based Approach

Zeng, Y., Wang, C., Gu, X., Samaras, D., Paragios, N.

In IEEE International Conference on Computer Vision (ICCV), pages: 3360~3367, 2013 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl training faces
Random Forests for Real Time 3D Face Analysis

Fanelli, G., Dantone, M., Gall, J., Fossati, A., van Gool, L.

International Journal of Computer Vision, 101(3):437-458, Springer, 2013 (article)

Abstract
We present a random forest-based framework for real time head pose estimation from depth images and extend it to localize a set of facial features in 3D. Our algorithm takes a voting approach, where each patch extracted from the depth image can directly cast a vote for the head pose or each of the facial features. Our system proves capable of handling large rotations, partial occlusions, and the noisy depth data acquired using commercial sensors. Moreover, the algorithm works on each frame independently and achieves real time performance without resorting to parallel computations on a GPU. We present extensive experiments on publicly available, challenging datasets and present a new annotated head pose database recorded using a Microsoft Kinect.

ps

data and code publisher's site pdf DOI Project Page [BibTex]

data and code publisher's site pdf DOI Project Page [BibTex]


Thumb xl humans3tracking
Markerless Motion Capture of Multiple Characters Using Multi-view Image Segmentation

Liu, Y., Gall, J., Stoll, C., Dai, Q., Seidel, H., Theobalt, C.

Transactions on Pattern Analysis and Machine Intelligence, 35(11):2720-2735, 2013 (article)

Abstract
Capturing the skeleton motion and detailed time-varying surface geometry of multiple, closely interacting peoples is a very challenging task, even in a multicamera setup, due to frequent occlusions and ambiguities in feature-to-person assignments. To address this task, we propose a framework that exploits multiview image segmentation. To this end, a probabilistic shape and appearance model is employed to segment the input images and to assign each pixel uniquely to one person. Given the articulated template models of each person and the labeled pixels, a combined optimization scheme, which splits the skeleton pose optimization problem into a local one and a lower dimensional global one, is applied one by one to each individual, followed with surface estimation to capture detailed nonrigid deformations. We show on various sequences that our approach can capture the 3D motion of humans accurately even if they move rapidly, if they wear wide apparel, and if they are engaged in challenging multiperson motions, including dancing, wrestling, and hugging.

ps

data and video pdf DOI Project Page [BibTex]

data and video pdf DOI Project Page [BibTex]


Thumb xl perception
Viewpoint and pose in body-form adaptation

Sekunova, A., Black, M., Parkinson, L., Barton, J. J. S.

Perception, 42(2):176-186, 2013 (article)

Abstract
Faces and bodies are complex structures, perception of which can play important roles in person identification and inference of emotional state. Face representations have been explored using behavioural adaptation: in particular, studies have shown that face aftereffects show relatively broad tuning for viewpoint, consistent with origin in a high-level structural descriptor far removed from the retinal image. Our goals were to determine first, if body aftereffects also showed a degree of viewpoint invariance, and second if they also showed pose invariance, given that changes in pose create even more dramatic changes in the 2-D retinal image. We used a 3-D model of the human body to generate headless body images, whose parameters could be varied to generate different body forms, viewpoints, and poses. In the first experiment, subjects adapted to varying viewpoints of either slim or heavy bodies in a neutral stance, followed by test stimuli that were all front-facing. In the second experiment, we used the same front-facing bodies in neutral stance as test stimuli, but compared adaptation from bodies in the same neutral stance to adaptation with the same bodies in different poses. We found that body aftereffects were obtained over substantial viewpoint changes, with no significant decline in aftereffect magnitude with increasing viewpoint difference between adapting and test images. Aftereffects also showed transfer across one change in pose but not across another. We conclude that body representations may have more viewpoint invariance than faces, and demonstrate at least some transfer across pose, consistent with a high-level structural description. Keywords: aftereffect, shape, face, representation

ps

pdf from publisher abstract pdf link (url) Project Page [BibTex]

pdf from publisher abstract pdf link (url) Project Page [BibTex]


no image
Optimal distribution of contact forces with inverse-dynamics control

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.

The International Journal of Robotics Research, 32(3):280-298, March 2013 (article)

Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of the contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In this contribution we develop an inverse-dynamics controller for floating-base robots under contact constraints that can minimize any combination of linear and quadratic costs in the contact constraints and the commands. Our main result is the exact analytical derivation of the controller. Such a result is particularly relevant for legged robots as it allows us to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, we can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The main advantages of the controller are its simplicity, computational efficiency and robustness to model inaccuracies. We present detailed experimental results on simulated humanoid and quadruped robots as well as a real quadruped robot. The experiments demonstrate that the controller can greatly improve the robustness of locomotion of the robots.1

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl houghforest
Class-Specific Hough Forests for Object Detection

Gall, J., Lempitsky, V.

In Decision Forests for Computer Vision and Medical Image Analysis, pages: 143-157, 11, (Editors: Criminisi, A. and Shotton, J.), Springer, 2013 (incollection)

ps

code Project Page [BibTex]

code Project Page [BibTex]


no image
Controlled Reduction with Unactuated Cyclic Variables: Application to 3D Bipedal Walking with Passive Yaw Rotation

Gregg, R., Righetti, L.

IEEE Transactions on Automatic Control, 58(10):2679-2685, October 2013 (article)

Abstract
This technical note shows that viscous damping can shape momentum conservation laws in a manner that stabilizes yaw rotation and enables steering for underactuated 3D walking. We first show that unactuated cyclic variables can be controlled by passively shaped conservation laws given a stabilizing controller in the actuated coordinates. We then exploit this result to realize controlled geometric reduction with multiple unactuated cyclic variables. We apply this underactuated control strategy to a five-link 3D biped to produce exponentially stable straight-ahead walking and steering in the presence of passive yawing.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task Error Models for Manipulation

Pastor, P., Kalakrishnan, M., Binney, J., Kelly, J., Righetti, L., Sukhatme, G. S., Schaal, S.

In 2013 IEEE Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
Precise kinematic forward models are important for robots to successfully perform dexterous grasping and manipulation tasks, especially when visual servoing is rendered infeasible due to occlusions. A lot of research has been conducted to estimate geometric and non-geometric parameters of kinematic chains to minimize reconstruction errors. However, kinematic chains can include non-linearities, e.g. due to cable stretch and motor-side encoders, that result in significantly different errors for different parts of the state space. Previous work either does not consider such non-linearities or proposes to estimate non-geometric parameters of carefully engineered models that are robot specific. We propose a data-driven approach that learns task error models that account for such unmodeled non-linearities. We argue that in the context of grasping and manipulation, it is sufficient to achieve high accuracy in the task relevant state space. We identify this relevant state space using previously executed joint configurations and learn error corrections for those. Therefore, our system is developed to generate subsequent executions that are similar to previous ones. The experiments show that our method successfully captures the non-linearities in the head kinematic chain (due to a counterbalancing spring) and the arm kinematic chains (due to cable stretch) of the considered experimental platform, see Fig. 1. The feasibility of the presented error learning approach has also been evaluated in independent DARPA ARM-S testing contributing to successfully complete 67 out of 72 grasping and manipulation tasks.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 2013 ivc rkek teaser
Non-parametric hand pose estimation with object context

Romero, J., Kjellström, H., Ek, C. H., Kragic, D.

Image and Vision Computing , 31(8):555 - 564, 2013 (article)

Abstract
In the spirit of recent work on contextual recognition and estimation, we present a method for estimating the pose of human hands, employing information about the shape of the object in the hand. Despite the fact that most applications of human hand tracking involve grasping and manipulation of objects, the majority of methods in the literature assume a free hand, isolated from the surrounding environment. Occlusion of the hand from grasped objects does in fact often pose a severe challenge to the estimation of hand pose. In the presented method, object occlusion is not only compensated for, it contributes to the pose estimation in a contextual fashion; this without an explicit model of object shape. Our hand tracking method is non-parametric, performing a nearest neighbor search in a large database (.. entries) of hand poses with and without grasped objects. The system that operates in real time, is robust to self occlusions, object occlusions and segmentation errors, and provides full hand pose reconstruction from monocular video. Temporal consistency in hand pose is taken into account, without explicitly tracking the hand in the high-dim pose space. Experiments show the non-parametric method to outperform other state of the art regression methods, while operating at a significantly lower computational cost than comparable model-based hand tracking methods.

ps

Publisher site pdf link (url) [BibTex]

Publisher site pdf link (url) [BibTex]

2012


Thumb xl pengthesisteaser
Virtual Human Bodies with Clothing and Hair: From Images to Animation

Guan, P.

Brown University, Department of Computer Science, December 2012 (phdthesis)

ps

pdf [BibTex]

2012


pdf [BibTex]


Thumb xl screen shot 2015 08 23 at 13.56.29
Towards Multi-DOF model mediated teleoperation: Using vision to augment feedback

Willaert, B., Bohg, J., Van Brussel, H., Niemeyer, G.

In IEEE International Workshop on Haptic Audio Visual Environments and Games (HAVE), pages: 25-31, October 2012 (inproceedings)

Abstract
In this paper, we address some of the challenges that arise as model-mediated teleoperation is applied to systems with multiple degrees of freedom and multiple sensors. Specifically we use a system with position, force, and vision sensors to explore an environment geometry in two degrees of freedom. The inclusion of vision is proposed to alleviate the difficulties of estimating an increasing number of environment properties. Vision can furthermore increase the predictive nature of model-mediated teleoperation, by effectively predicting touch feedback before the slave is even in contact with the environment. We focus on the case of estimating the location and orientation of a local surface patch at the contact point between the slave and the environment. We describe the various information sources with their respective limitations and create a combined model estimator as part of a multi-d.o.f. model-mediated controller. An experiment demonstrates the feasibility and benefits of utilizing vision sensors in teleoperation.

am

DOI [BibTex]

DOI [BibTex]


Thumb xl sankaran iros 20121
Failure Recovery with Shared Autonomy

Sankaran, B., Pitzer, B., Osentoski, S.

In International Conference on Intelligent Robots and Systems, October 2012 (inproceedings)

Abstract
Building robots capable of long term autonomy has been a long standing goal of robotics research. Such systems must be capable of performing certain tasks with a high degree of robustness and repeatability. In the context of personal robotics, these tasks could range anywhere from retrieving items from a refrigerator, loading a dishwasher, to setting up a dinner table. Given the complexity of tasks there are a multitude of failure scenarios that the robot can encounter, irrespective of whether the environment is static or dynamic. For a robot to be successful in such situations, it would need to know how to recover from failures or when to ask a human for help. This paper, presents a novel shared autonomy behavioral executive to addresses these issues. We demonstrate how this executive combines generalized logic based recovery and human intervention to achieve continuous failure free operation. We tested the systems over 250 trials of two different use case experiments. Our current algorithm drastically reduced human intervention from 26% to 4% on the first experiment and 46% to 9% on the second experiment. This system provides a new dimension to robot autonomy, where robots can exhibit long term failure free operation with minimal human supervision. We also discuss how the system can be generalized.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl coregtr
Coregistration: Supplemental Material

Hirshberg, D., Loper, M., Rachlin, E., Black, M. J.

(No. 4), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl paperfig
Lie Bodies: A Manifold Representation of 3D Human Shape

Freifeld, O., Black, M. J.

In European Conf. on Computer Vision (ECCV), pages: 1-14, Part I, LNCS 7572, (Editors: A. Fitzgibbon et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

Abstract
Three-dimensional object shape is commonly represented in terms of deformations of a triangular mesh from an exemplar shape. Existing models, however, are based on a Euclidean representation of shape deformations. In contrast, we argue that shape has a manifold structure: For example, summing the shape deformations for two people does not necessarily yield a deformation corresponding to a valid human shape, nor does the Euclidean difference of these two deformations provide a meaningful measure of shape dissimilarity. Consequently, we define a novel manifold for shape representation, with emphasis on body shapes, using a new Lie group of deformations. This has several advantages. First we define triangle deformations exactly, removing non-physical deformations and redundant degrees of freedom common to previous methods. Second, the Riemannian structure of Lie Bodies enables a more meaningful definition of body shape similarity by measuring distance between bodies on the manifold of body shape deformations. Third, the group structure allows the valid composition of deformations. This is important for models that factor body shape deformations into multiple causes or represent shape as a linear combination of basis shapes. Finally, body shape variation is modeled using statistics on manifolds. Instead of modeling Euclidean shape variation with Principal Component Analysis we capture shape variation on the manifold using Principal Geodesic Analysis. Our experiments show consistent visual and quantitative advantages of Lie Bodies over traditional Euclidean models of shape deformation and our representation can be easily incorporated into existing methods.

ps

pdf supplemental material youtube poster eigenshape video code Project Page Project Page Project Page [BibTex]

pdf supplemental material youtube poster eigenshape video code Project Page Project Page Project Page [BibTex]


Thumb xl coregteaser
Coregistration: Simultaneous alignment and modeling of articulated 3D shape

Hirshberg, D., Loper, M., Rachlin, E., Black, M.

In European Conf. on Computer Vision (ECCV), pages: 242-255, LNCS 7577, Part IV, (Editors: A. Fitzgibbon et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

Abstract
Three-dimensional (3D) shape models are powerful because they enable the inference of object shape from incomplete, noisy, or ambiguous 2D or 3D data. For example, realistic parameterized 3D human body models have been used to infer the shape and pose of people from images. To train such models, a corpus of 3D body scans is typically brought into registration by aligning a common 3D human-shaped template to each scan. This is an ill-posed problem that typically involves solving an optimization problem with regularization terms that penalize implausible deformations of the template. When aligning a corpus, however, we can do better than generic regularization. If we have a model of how the template can deform then alignments can be regularized by this model. Constructing a model of deformations, however, requires having a corpus that is already registered. We address this chicken-and-egg problem by approaching modeling and registration together. By minimizing a single objective function, we reliably obtain high quality registration of noisy, incomplete, laser scans, while simultaneously learning a highly realistic articulated body model. The model greatly improves robustness to noise and missing data. Since the model explains a corpus of body scans, it captures how body shape varies across people and poses.

ps

pdf publisher site poster supplemental material (400MB) Project Page Project Page [BibTex]

pdf publisher site poster supplemental material (400MB) Project Page Project Page [BibTex]


Thumb xl lietr
Lie Bodies: A Manifold Representation of 3D Human Shape. Supplemental Material

Freifeld, O., Black, M. J.

(No. 5), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl posear
Coupled Action Recognition and Pose Estimation from Multiple Views

Yao, A., Gall, J., van Gool, L.

International Journal of Computer Vision, 100(1):16-37, October 2012 (article)

ps

publisher's site code pdf Project Page Project Page Project Page [BibTex]

publisher's site code pdf Project Page Project Page Project Page [BibTex]


Thumb xl sinteltr
MPI-Sintel Optical Flow Benchmark: Supplemental Material

Butler, D. J., Wulff, J., Stanley, G. B., Black, M. J.

(No. 6), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl sintelworkshop
Lessons and insights from creating a synthetic optical flow benchmark

Wulff, J., Butler, D. J., Stanley, G. B., Black, M. J.

In ECCV Workshop on Unsolved Problems in Optical Flow and Stereo Estimation, pages: 168-177, Part II, LNCS 7584, (Editors: A. Fusiello et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

ps

pdf dataset poster youtube Project Page [BibTex]

pdf dataset poster youtube Project Page [BibTex]


Thumb xl tripod seq 16 054 part 3d vis
3D2PM – 3D Deformable Part Models

Pepik, B., Gehler, P., Stark, M., Schiele, B.

In Proceedings of the European Conference on Computer Vision (ECCV), pages: 356-370, Lecture Notes in Computer Science, (Editors: Fitzgibbon, Andrew W. and Lazebnik, Svetlana and Perona, Pietro and Sato, Yoichi and Schmid, Cordelia), Springer, Firenze, October 2012 (inproceedings)

ps

pdf video poster Project Page [BibTex]

pdf video poster Project Page [BibTex]


Thumb xl sinteleccv2012crop
A naturalistic open source movie for optical flow evaluation

Butler, D. J., Wulff, J., Stanley, G. B., Black, M. J.

In European Conf. on Computer Vision (ECCV), pages: 611-625, Part IV, LNCS 7577, (Editors: A. Fitzgibbon et al. (Eds.)), Springer-Verlag, October 2012 (inproceedings)

Abstract
Ground truth optical flow is difficult to measure in real scenes with natural motion. As a result, optical flow data sets are restricted in terms of size, complexity, and diversity, making optical flow algorithms difficult to train and test on realistic data. We introduce a new optical flow data set derived from the open source 3D animated short film Sintel. This data set has important features not present in the popular Middlebury flow evaluation: long sequences, large motions, specular reflections, motion blur, defocus blur, and atmospheric effects. Because the graphics data that generated the movie is open source, we are able to render scenes under conditions of varying complexity to evaluate where existing flow algorithms fail. We evaluate several recent optical flow algorithms and find that current highly-ranked methods on the Middlebury evaluation have difficulty with this more complex data set suggesting further research on optical flow estimation is needed. To validate the use of synthetic data, we compare the image- and flow-statistics of Sintel to those of real films and videos and show that they are similar. The data set, metrics, and evaluation website are publicly available.

ps

pdf dataset youtube talk supplemental material Project Page Project Page [BibTex]

pdf dataset youtube talk supplemental material Project Page Project Page [BibTex]


Thumb xl bottlehandovergrasp
Task-Based Grasp Adaptation on a Humanoid Robot

Bohg, J., Welke, K., León, B., Do, M., Song, D., Wohlkinger, W., Aldoma, A., Madry, M., Przybylski, M., Asfour, T., Marti, H., Kragic, D., Morales, A., Vincze, M.

In 10th IFAC Symposium on Robot Control, SyRoCo 2012, Dubrovnik, Croatia, September 5-7, 2012., pages: 779-786, September 2012 (inproceedings)

Abstract
In this paper, we present an approach towards autonomous grasping of objects according to their category and a given task. Recent advances in the field of object segmentation and categorization as well as task-based grasp inference have been leveraged by integrating them into one pipeline. This allows us to transfer task-specific grasp experience between objects of the same category. The effectiveness of the approach is demonstrated on the humanoid robot ARMAR-IIIa.

am

Video pdf DOI [BibTex]

Video pdf DOI [BibTex]


Thumb xl embs2012
A framework for relating neural activity to freely moving behavior

Foster, J. D., Nuyujukian, P., Freifeld, O., Ryu, S., Black, M. J., Shenoy, K. V.

In 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’12), pages: 2736 -2739 , IEEE, San Diego, August 2012 (inproceedings)

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl screen shot 2012 06 25 at 1.59.41 pm
Pottics – The Potts Topic Model for Semantic Image Segmentation

Dann, C., Gehler, P., Roth, S., Nowozin, S.

In Proceedings of 34th DAGM Symposium, pages: 397-407, Lecture Notes in Computer Science, (Editors: Pinz, Axel and Pock, Thomas and Bischof, Horst and Leberl, Franz), Springer, August 2012 (inproceedings)

ps

code pdf poster [BibTex]

code pdf poster [BibTex]


Thumb xl thumb hennigk2012
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

In Proceedings of the 29th International Conference on Machine Learning, pages: 25-32, ICML ’12, (Editors: John Langford and Joelle Pineau), Omnipress, New York, NY, USA, ICML, July 2012 (inproceedings)

Abstract
Four decades after their invention, quasi- Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

ei ps pn

website+code pdf link (url) [BibTex]

website+code pdf link (url) [BibTex]


Thumb xl representativecrop
DRAPE: DRessing Any PErson

Guan, P., Reiss, L., Hirshberg, D., Weiss, A., Black, M. J.

ACM Trans. on Graphics (Proc. SIGGRAPH), 31(4):35:1-35:10, July 2012 (article)

Abstract
We describe a complete system for animating realistic clothing on synthetic bodies of any shape and pose without manual intervention. The key component of the method is a model of clothing called DRAPE (DRessing Any PErson) that is learned from a physics-based simulation of clothing on bodies of different shapes and poses. The DRAPE model has the desirable property of "factoring" clothing deformations due to body shape from those due to pose variation. This factorization provides an approximation to the physical clothing deformation and greatly simplifies clothing synthesis. Given a parameterized model of the human body with known shape and pose parameters, we describe an algorithm that dresses the body with a garment that is customized to fit and possesses realistic wrinkles. DRAPE can be used to dress static bodies or animated sequences with a learned model of the cloth dynamics. Since the method is fully automated, it is appropriate for dressing large numbers of virtual characters of varying shape. The method is significantly more efficient than physical simulation.

ps

YouTube pdf talk Project Page Project Page [BibTex]

YouTube pdf talk Project Page Project Page [BibTex]


Thumb xl deqingthesisteaser
From Pixels to Layers: Joint Motion Estimation and Segmentation

Sun, D.

Brown University, Department of Computer Science, July 2012 (phdthesis)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl screen shot 2017 09 21 at 00.54.33
Entropy Search for Information-Efficient Global Optimization

Hennig, P., Schuler, C.

Journal of Machine Learning Research, 13, pages: 1809-1837, -, June 2012 (article)

Abstract
Contemporary global optimization algorithms are based on local measures of utility, rather than a probability measure over location and value of the optimum. They thus attempt to collect low function values, not to learn about the optimum. The reason for the absence of probabilistic global optimizers is that the corresponding inference problem is intractable in several ways. This paper develops desiderata for probabilistic optimization algorithms, then presents a concrete algorithm which addresses each of the computational intractabilities with a sequence of approximations and explicitly adresses the decision problem of maximizing information gain from each evaluation.

ei pn

PDF Web Project Page [BibTex]

PDF Web Project Page [BibTex]


Thumb xl frompstods2
From pictorial structures to deformable structures

Zuffi, S., Freifeld, O., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3546-3553, IEEE, June 2012 (inproceedings)

Abstract
Pictorial Structures (PS) define a probabilistic model of 2D articulated objects in images. Typical PS models assume an object can be represented by a set of rigid parts connected with pairwise constraints that define the prior probability of part configurations. These models are widely used to represent non-rigid articulated objects such as humans and animals despite the fact that such objects have parts that deform non-rigidly. Here we define a new Deformable Structures (DS) model that is a natural extension of previous PS models and that captures the non-rigid shape deformation of the parts. Each part in a DS model is represented by a low-dimensional shape deformation space and pairwise potentials between parts capture how the shape varies with pose and the shape of neighboring parts. A key advantage of such a model is that it more accurately models object boundaries. This enables image likelihood models that are more discriminative than previous PS likelihoods. This likelihood is learned using training imagery annotated using a DS “puppet.” We focus on a human DS model learned from 2D projections of a realistic 3D human body model and use it to infer human poses in images using a form of non-parametric belief propagation.

ps

pdf sup mat code poster Project Page Project Page Project Page Project Page [BibTex]

pdf sup mat code poster Project Page Project Page Project Page Project Page [BibTex]


Thumb xl screen shot 2012 03 22 at 17.51.07
Teaching 3D Geometry to Deformable Part Models

Pepik, B., Stark, M., Gehler, P., Schiele, B.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 3362 -3369, IEEE, Providence, RI, USA, June 2012, oral presentation (inproceedings)

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]