Header logo is


2015


no image
Transition matrix elements for electron-phonon scattering: Phenomenological theory and ab initio electron theory

Illg, C., Haag, M., Müller, B. Y., Czycholl, G., Fähnle, M.

{Physical Review B}, 92(19), American Physical Society, Woodbury, NY, 2015 (article)

mms

DOI [BibTex]

2015


DOI [BibTex]


no image
Phase evolution in single-crystalline LiFePO4 followed by in situ scanning X-ray microscopy of a micrometre-sized battery

Ohmer, N., Fenk, B., Samuelis, D., Chen, C., Maier, J., Weigand, M., Goering, E., Schütz, G.

{Nature Communications}, 6, Nature Publishing Group, London, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Nitrogen-rich covalent triazine frameworks as high-performance platforms for selective carbon capture and storage

Hug, S., Stegbauer, L., Oh, H., Hirscher, M., Lotsch, B. V.

{Chemistry of Materials}, 27(23):8001-8010, American Chemical Society, Washington, D.C., 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
From Humans to Robots and Back: Role of Arm Movement in Medio-lateral Balance Control

Huber, M, Chiovetto, E, Schaal, S., Giese, M., Sternad, D

In Annual Meeting of Neural Control of Movement, Charleston, NC, 2015 (inproceedings)

am

[BibTex]

[BibTex]


no image
Multilayer Fresnel zone plates for X-ray microscopy

Sanli, U. T., Keskinbora, K., Grévent, C., Szeghalmi, A., Knez, M., Schütz, G.

{Microscopy and Microanalysis}, 21(Suppl 3):1987-1988, Springer-Verlag New York, New York, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Interfacial dominated ferromagnetism in nanograined ZnO: a \muSR and DFT study

Tietze, T., Audehm, P., Chen, Y., Schütz, G., Straumal, B. B., Protasova, S. G., Mazilkin, A. A., Straumal, P. B., Prokscha, T., Luetkens, H., Salman, Z., Suter, A., Baretzky, B., Fink, K., Wenzel, W., Danilov, D., Goering, E.

{Scientific Reports}, 5, pages: 8871-8876, Nature Publishing Group, London, UK, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Preparation of a ferromagnetic barrier in YBa2Cu3O7-delta thinner than the coherence length

Soltan, S., Albrecht, J., Goering, E., Schütz, G., Mustafa, L., Keimer, B., Habermeier, H.

{Journal of Applied Physics}, 118(22), AIP Publishing, New York, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Microanalytical methods for in-situ high-resolution analysis of rock varnish at the micrometer to nanometer scale

Macholdt, D. S., Jochum, K. P., Pöhlker, C., Stoll, B., Weis, U., Weber, B., Müller, M., Kapl, M., Buhre, S., Kilcoyne, A. L. D., Weigand, M., Scholz, D., Al-Amri, A. M., Andreae, M. O.

{Chemical Geology}, 411, pages: 57-68, Elsevier, Amsterdam, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

Mikhailov, E. F., Mironov, G. N., Pöhlker, C., Chi, X., Krüger, M., Shiraiwa, M., Förster, J., Pöschl, U., Vlasenko, S. S., Ryshkevich, T. I., Weigand, M., Kilcoyne, A. L. D., Andreae, M.

{Atmospheric Chemistry and Physics}, 15(15):8847-8869, European Geosciences Union, Katlenburg-Lindau, Germany, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Orbital reflectometry of PrNiO3/PrAlO3 superlattices

Wu, M., Benckiser, E., Audehm, P., Goering, E., Wochner, P., Christiani, G., Logvenov, G., Habermeier, H., Keimer, B.

{Physical Review B}, 91(19), American Physical Society, Woodbury, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Dynamic domain wall chirality rectification by rotating magnetic fields

Bisig, A., Mawass, M., Stärk, M., Moutafis, C., Rhensius, J., Heidler, J., Gliga, S., Weigand, M., Tyliszczak, T., Van Waeyenberge, B., Stoll, H., Schütz, G., Kläui, M.

{Applied Physics Letters}, 106(12), American Institute of Physics, Melville, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ultrafast demagnetization after laser pulse irradiation in Ni: Ab-initio electron-phonon scattering and phase space calculations

Illg, C., Haag, M., Fähnle, M.

In Ultrafast Magnetism I. Proceedings of the International Conference UMC 2013, 159, pages: 131-133, Springer Proceedings in Physics, Springer, Strasbourg, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Imaging spin dynamics on the nanoscale using X-ray microscopy

Stoll, H., Noske, M., Weigand, M., Richter, K., Krüger, B., Reeve, R. M., Hänze, M., Adolff, C. F., Stein, F., Meier, G., Kläui, M., Schütz, G.

{Frontiers in Physics}, 3, Frontiers Media, Lausanne, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Trajectory generation for multi-contact momentum control

Herzog, A., Rotella, N., Schaal, S., Righetti, L.

In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages: 874-880, IEEE, Seoul, South Korea, 2015 (inproceedings)

Abstract
Simplified models of the dynamics such as the linear inverted pendulum model (LIPM) have proven to perform well for biped walking on flat ground. However, for more complex tasks the assumptions of these models can become limiting. For example, the LIPM does not allow for the control of contact forces independently, is limited to co-planar contacts and assumes that the angular momentum is zero. In this paper, we propose to use the full momentum equations of a humanoid robot in a trajectory optimization framework to plan its center of mass, linear and angular momentum trajectories. The model also allows for planning desired contact forces for each end-effector in arbitrary contact locations. We extend our previous results on linear quadratic regulator (LQR) design for momentum control by computing the (linearized) optimal momentum feedback law in a receding horizon fashion. The resulting desired momentum and the associated feedback law are then used in a hierarchical whole body control approach. Simulation experiments show that the approach is computationally fast and is able to generate plans for locomotion on complex terrains while demonstrating good tracking performance for the full humanoid control.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Voltage-induced magnetic manipulation of a microstructured iron gold multilayer system

Sittig, Robert

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Unique high-temperature performance of highly consensed MnBi permanent magnets

Chen, Y., Gregori, G., Leineweber, A., Qu, F., Chen, C., Tietze, T., Kronmüller, H., Schütz, G., Goering, E.

{Scripta Materialia}, 107, pages: 131-135, Pergamon, Tarrytown, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Electrical determination of vortex state in submicron magnetic elements

Gangwar, A., Bauer, H. G., Chauleau, J., Noske, M., Weigand, M., Stoll, H., Schütz, G., Back, C. H.

{Physical Review B}, 91(9), American Physical Society, Woodbury, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Mechanisms for the symmetric and antisymmetric switching of a magnetic vortex core: Differences and common aspects

Noske, M., Stoll, H., Fähnle, M., Hertel, R., Schütz, G.

{Physical Review B}, 91(1), American Physical Society, Woodbury, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Automotive domain wall propagation in ferromagnetic rings

Richter, K., Mawass, M., Krone, A., Krüger, B., Weigand, M., Schütz, G., Stoll, H., Kläui, M.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
High resolution, high efficiency mulitlayer Fresnel zone plates for soft and hard X-rays

Sanli, U., Keskinbora, K., Gregorczyk, K., Leister, J., Teeny, N., Grévent, C., Knez, M., Schütz, G.

{Proceedings of SPIE}, 9592, SPIE, Bellingham, Washington, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Macroscopic drift current in the inverse Faraday effect

Hertel, R., Fähnle, M.

{Physical Review B}, 91(2), American Physical Society, Woodbury, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Single-step 3D nanofabrication of kinoform optics via gray-scale focused ion beam lithography for efficient X-ray focusing

Keskinbora, K., Grévent, C., Hirscher, M., Weigand, M., Schütz, G.

{Advanced Optical Materials}, 3, pages: 792-800, WILEY-VCH Verlag GmbH Co. KGaA, Weinheim, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Band structure engineering of two-dimensional magnonic vortex crystals

Behncke, C., Hänze, M., Adolff, C. F., Weigand, M., Meier, G.

{Physical Review B}, 91(22), American Physical Society, Woodbury, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter

Kopp, M., Harmeling, S., Schütz, G., Schölkopf, B., Fähnle, M.

{Ultramicroscopy}, 148, pages: 115-122, North-Holland, Amsterdam, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Humanoid Momentum Estimation Using Sensed Contact Wrenches

Rotella, N., Herzog, A., Schaal, S., Righetti, L.

In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages: 556-563, IEEE, Seoul, South Korea, 2015 (inproceedings)

Abstract
This work presents approaches for the estimation of quantities important for the control of the momentum of a humanoid robot. In contrast to previous approaches which use simplified models such as the Linear Inverted Pendulum Model, we present estimators based on the momentum dynamics of the robot. By using this simple yet dynamically-consistent model, we avoid the issues of using simplified models for estimation. We develop an estimator for the center of mass and full momentum which can be reformulated to estimate center of mass offsets as well as external wrenches applied to the robot. The observability of these estimators is investigated and their performance is evaluated in comparison to previous approaches.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Magnetic moments induce strong phonon renormalization in FeSi

Krannich, S., Sidis, Y., Lamago, D., Heid, R., Mignot, J., von Löhneysen, H., Ivanov, A., Steffens, P., Keller, T., Wang, L., Goering, E., Weber, F.

{Nature Communications}, 6, Nature Publishing Group, London, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Transfer of angular momentum from the spin system to the lattice during ultrafast magnetization

Tsatsoulis, T.

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J. A., Schaal, S.

In Springer Handbook of Robotics 2nd Edition, pages: 1371-1394, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015 (incollection)

am

[BibTex]

[BibTex]


no image
Derivation of phenomenological expressions for transition matrix elements for electron-phonon scattering

Illg, C., Haag, M., Müller, B. Y., Czycholl, G., Fähnle, M.

2015 (misc)

mms

link (url) [BibTex]


no image
Quantum kinetic theory of ultrafast demagnetization by electron-phonon scattering

Briones Paz, J. Z.

Universität Stuttgart, Stuttgart, 2015 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Perpendicular magnetisation from in-plane fields in nano-scaled antidot lattices

Gräfe, J., Haering, F., Tietze, T., Audehm, P., Weigand, M., Wiedwald, U., Ziemann, P., Gawronski, P., Schütz, G., Goering, E. J.

{Nanotechnology}, 26(22), IOP Pub., Bristol, UK, 2015 (article)

mms

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Theory of ultrafast demagnetization after femtosecond laser pulses

Fähnle, M., Illg, C., Haag, M., Teeny, N.

{Acta Physica Polonica A}, 127(2):170-175, Państwowe Wydawnictwo Naukowe, Warszawa, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Non-linear radial spinwave modes in thin magnetic disks

Helsen, M., Gangwar, Ajay, De Clercq, J., Vansteenkiste, A., Weigand, M., Back, C. H., Van Waeyenberge, B.

{Applied Physics Letters}, 106(3), American Institute of Physics, Melville, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Hydrogen isotope separation in metal-organic frameworks: Kinetic or chemical affinity quantum-sieving?

Savchenko, I., Mavrandonakis, A., Heine, T., Oh, H., Teufel, J., Hirscher, M.

{Microporous and Mesoporous Materials}, 216, pages: 133-137, Elsevier, Amsterdam, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

Ruoß, S., Stahl, C., Weigand, M., Schütz, G., Albrecht, J.

{Applied Physics Letters}, 106, American Institute of Physics, Melville, NY, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The third dimension: Vortex core reversal by interaction with \textquotesingleflexure modes’

Noske, M., Stoll, H., Fähnle, M., Weigand, M., Dieterle, G., Förster, J., Gangwar, A., Slavin, A., Back, C. H., Schütz, G.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Preparation and characterisation of epitaxial Pt/Cu/FeMn/Co thin films on (100)-oriented MgO single crystals

Schmidt, M., Gräfe, J., Audehm, P., Phillipp, F., Schütz, G., Goering, E.

{Physica Status Solidi A}, 212(10):2114-2123, Wiley-VCH, Weinheim, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Probing the magnetic moments of [MnIII6CrIII]3+ single-molecule magnets - A cross comparison of XMCD and spin-resolved electron spectroscopy

Helmstedt, A., Dohmeier, N., Müller, N., Gryzia, A., Brechling, A., Heinzmann, U., Hoeke, V., Krickemeyer, E., Glaser, T., Leicht, P., Fonin, M., Tietze, T., Joly, L., Kuepper, K.

{Journal of Electron Spectroscopy and Related Phenomena}, 198, pages: 12-19, Elsevier B.V., Amsterdam, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Skyrmions at room temperature in magnetic multilayers

Moreau-Luchaire, C., Reyren, N., Moutafis, C., Sampaio, J., Van Horne, N., Vaz, C. A., Warnicke, P., Garcia, K., Weigand, M., Bouzehouane, K., Deranlot, C., George, J., Raabe, J., Cros, V., Fert, A.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]

2011


Thumb xl iccv2011homepageimage notext small
Home 3D body scans from noisy image and range data

Weiss, A., Hirshberg, D., Black, M.

In Int. Conf. on Computer Vision (ICCV), pages: 1951-1958, IEEE, Barcelona, November 2011 (inproceedings)

Abstract
The 3D shape of the human body is useful for applications in fitness, games and apparel. Accurate body scanners, however, are expensive, limiting the availability of 3D body models. We present a method for human shape reconstruction from noisy monocular image and range data using a single inexpensive commodity sensor. The approach combines low-resolution image silhouettes with coarse range data to estimate a parametric model of the body. Accurate 3D shape estimates are obtained by combining multiple monocular views of a person moving in front of the sensor. To cope with varying body pose, we use a SCAPE body model which factors 3D body shape and pose variations. This enables the estimation of a single consistent shape while allowing pose to vary. Additionally, we describe a novel method to minimize the distance between the projected 3D body contour and the image silhouette that uses analytic derivatives of the objective function. We propose a simple method to estimate standard body measurements from the recovered SCAPE model and show that the accuracy of our method is competitive with commercial body scanning systems costing orders of magnitude more.

ps

pdf YouTube poster Project Page Project Page [BibTex]

2011


pdf YouTube poster Project Page Project Page [BibTex]


Thumb xl lugano11small
Evaluating the Automated Alignment of 3D Human Body Scans

Hirshberg, D. A., Loper, M., Rachlin, E., Tsoli, A., Weiss, A., Corner, B., Black, M. J.

In 2nd International Conference on 3D Body Scanning Technologies, pages: 76-86, (Editors: D’Apuzzo, Nicola), Hometrica Consulting, Lugano, Switzerland, October 2011 (inproceedings)

Abstract
The statistical analysis of large corpora of human body scans requires that these scans be in alignment, either for a small set of key landmarks or densely for all the vertices in the scan. Existing techniques tend to rely on hand-placed landmarks or algorithms that extract landmarks from scans. The former is time consuming and subjective while the latter is error prone. Here we show that a model-based approach can align meshes automatically, producing alignment accuracy similar to that of previous methods that rely on many landmarks. Specifically, we align a low-resolution, artist-created template body mesh to many high-resolution laser scans. Our alignment procedure employs a robust iterative closest point method with a regularization that promotes smooth and locally rigid deformation of the template mesh. We evaluate our approach on 50 female body models from the CAESAR dataset that vary significantly in body shape. To make the method fully automatic, we define simple feature detectors for the head and ankles, which provide initial landmark locations. We find that, if body poses are fairly similar, as in CAESAR, the fully automated method provides dense alignments that enable statistical analysis and anthropometric measurement.

ps

pdf slides DOI Project Page [BibTex]

pdf slides DOI Project Page [BibTex]


Thumb xl sigalijcv11
Loose-limbed People: Estimating 3D Human Pose and Motion Using Non-parametric Belief Propagation

Sigal, L., Isard, M., Haussecker, H., Black, M. J.

International Journal of Computer Vision, 98(1):15-48, Springer Netherlands, May 2011 (article)

Abstract
We formulate the problem of 3D human pose estimation and tracking as one of inference in a graphical model. Unlike traditional kinematic tree representations, our model of the body is a collection of loosely-connected body-parts. In particular, we model the body using an undirected graphical model in which nodes correspond to parts and edges to kinematic, penetration, and temporal constraints imposed by the joints and the world. These constraints are encoded using pair-wise statistical distributions, that are learned from motion-capture training data. Human pose and motion estimation is formulated as inference in this graphical model and is solved using Particle Message Passing (PaMPas). PaMPas is a form of non-parametric belief propagation that uses a variation of particle filtering that can be applied over a general graphical model with loops. The loose-limbed model and decentralized graph structure allow us to incorporate information from "bottom-up" visual cues, such as limb and head detectors, into the inference process. These detectors enable automatic initialization and aid recovery from transient tracking failures. We illustrate the method by automatically tracking people in multi-view imagery using a set of calibrated cameras and present quantitative evaluation using the HumanEva dataset.

ps

pdf publisher's site link (url) Project Page Project Page [BibTex]

pdf publisher's site link (url) Project Page Project Page [BibTex]


Thumb xl pointclickimagewide
Point-and-Click Cursor Control With an Intracortical Neural Interface System by Humans With Tetraplegia

Kim, S., Simeral, J. D., Hochberg, L. R., Donoghue, J. P., Friehs, G. M., Black, M. J.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(2):193-203, April 2011 (article)

Abstract
We present a point-and-click intracortical neural interface system (NIS) that enables humans with tetraplegia to volitionally move a 2D computer cursor in any desired direction on a computer screen, hold it still and click on the area of interest. This direct brain-computer interface extracts both discrete (click) and continuous (cursor velocity) signals from a single small population of neurons in human motor cortex. A key component of this system is a multi-state probabilistic decoding algorithm that simultaneously decodes neural spiking activity and outputs either a click signal or the velocity of the cursor. The algorithm combines a linear classifier, which determines whether the user is intending to click or move the cursor, with a Kalman filter that translates the neural population activity into cursor velocity. We present a paradigm for training the multi-state decoding algorithm using neural activity observed during imagined actions. Two human participants with tetraplegia (paralysis of the four limbs) performed a closed-loop radial target acquisition task using the point-and-click NIS over multiple sessions. We quantified point-and-click performance using various human-computer interaction measurements for pointing devices. We found that participants were able to control the cursor motion accurately and click on specified targets with a small error rate (< 3% in one participant). This study suggests that signals from a small ensemble of motor cortical neurons (~40) can be used for natural point-and-click 2D cursor control of a personal computer.

ps

pdf publishers's site pub med link (url) Project Page [BibTex]

pdf publishers's site pub med link (url) Project Page [BibTex]


Thumb xl middleburyimagesmall
A Database and Evaluation Methodology for Optical Flow

Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., Szeliski, R.

International Journal of Computer Vision, 92(1):1-31, March 2011 (article)

Abstract
The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms. To that end, we contribute four types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid motion where the ground-truth flow is determined by tracking hidden fluorescent texture, (2) realistic synthetic sequences, (3) high frame-rate video used to study interpolation error, and (4) modified stereo sequences of static scenes. In addition to the average angular error used by Barron et al., we compute the absolute flow endpoint error, measures for frame interpolation error, improved statistics, and results at motion discontinuities and in textureless regions. In October 2007, we published the performance of several well-known methods on a preliminary version of our data to establish the current state of the art. We also made the data freely available on the web at http://vision.middlebury.edu/flow/ . Subsequently a number of researchers have uploaded their results to our website and published papers using the data. A significant improvement in performance has already been achieved. In this paper we analyze the results obtained to date and draw a large number of conclusions from them.

ps

pdf pdf from publisher Middlebury Flow Evaluation Website [BibTex]

pdf pdf from publisher Middlebury Flow Evaluation Website [BibTex]


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, Mrinal, Buchli, Jonas, Pastor, Peter, Mistry, Michael, Schaal, S.

International Journal of Robotics Research, 30(2):236-258, February 2011 (article)

am

[BibTex]

[BibTex]


no image
STOMP: Stochastic trajectory optimization for motion planning

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
We present a new approach to motion planning using a stochastic trajectory optimization framework. The approach relies on generating noisy trajectories to explore the space around an initial (possibly infeasible) trajectory, which are then combined to produced an updated trajectory with lower cost. A cost function based on a combination of obstacle and smoothness cost is optimized in each iteration. No gradient information is required for the particular optimization algorithm that we use and so general costs for which derivatives may not be available (e.g. costs corresponding to constraints and motor torques) can be included in the cost function. We demonstrate the approach both in simulation and on a dual-arm mobile manipulation system for unconstrained and constrained tasks. We experimentally show that the stochastic nature of STOMP allows it to overcome local minima that gradient-based optimizers like CHOMP can get stuck in.

am

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl problem
Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance

Gehler, P., Rother, C., Kiefel, M., Zhang, L., Schölkopf, B.

In Advances in Neural Information Processing Systems 24, pages: 765-773, (Editors: Shawe-Taylor, John and Zemel, Richard S. and Bartlett, Peter L. and Pereira, Fernando C. N. and Weinberger, Kilian Q.), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We address the challenging task of decoupling material properties from lighting properties given a single image. In the last two decades virtually all works have concentrated on exploiting edge information to address this problem. We take a different route by introducing a new prior on reflectance, that models reflectance values as being drawn from a sparse set of basis colors. This results in a Random Field model with global, latent variables (basis colors) and pixel-accurate output reflectance values. We show that without edge information high-quality results can be achieved, that are on par with methods exploiting this source of information. Finally, we are able to improve on state-of-the-art results by integrating edge information into our model. We believe that our new approach is an excellent starting point for future developments in this field.

ei ps

website + code pdf poster Project Page Project Page [BibTex]

website + code pdf poster Project Page Project Page [BibTex]


no image
Path Integral Control and Bounded Rationality

Braun, D. A., Ortega, P. A., Theodorou, E., Schaal, S.

In IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), 2011, clmc (inproceedings)

Abstract
Path integral methods [7], [15],[1] have recently been shown to be applicable to a very general class of optimal control problems. Here we examine the path integral formalism from a decision-theoretic point of view, since an optimal controller can always be regarded as an instance of a perfectly rational decision-maker that chooses its actions so as to maximize its expected utility [8]. The problem with perfect rationality is, however, that finding optimal actions is often very difficult due to prohibitive computational resource costs that are not taken into account. In contrast, a bounded rational decision-maker has only limited resources and therefore needs to strike some compromise between the desired utility and the required resource costs [14]. In particular, we suggest an information-theoretic measure of resource costs that can be derived axiomatically [11]. As a consequence we obtain a variational principle for choice probabilities that trades off maximizing a given utility criterion and avoiding resource costs that arise due to deviating from initially given default choice probabilities. The resulting bounded rational policies are in general probabilistic. We show that the solutions found by the path integral formalism are such bounded rational policies. Furthermore, we show that the same formalism generalizes to discrete control problems, leading to linearly solvable bounded rational control policies in the case of Markov systems. Importantly, Bellman?s optimality principle is not presupposed by this variational principle, but it can be derived as a limit case. This suggests that the information- theoretic formalization of bounded rationality might serve as a general principle in control design that unifies a number of recently reported approximate optimal control methods both in the continuous and discrete domain.

am

PDF [BibTex]

PDF [BibTex]


no image
Skill learning and task outcome prediction for manipulation

Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
Learning complex motor skills for real world tasks is a hard problem in robotic manipulation that often requires painstaking manual tuning and design by a human expert. In this work, we present a Reinforcement Learning based approach to acquiring new motor skills from demonstration. Our approach allows the robot to learn fine manipulation skills and significantly improve its success rate and skill level starting from a possibly coarse demonstration. Our approach aims to incorporate task domain knowledge, where appropriate, by working in a space consistent with the constraints of a specific task. In addition, we also present an approach to using sensor feedback to learn a predictive model of the task outcome. This allows our system to learn the proprioceptive sensor feedback needed to monitor subsequent executions of the task online and abort execution in the event of predicted failure. We illustrate our approach using two example tasks executed with the PR2 dual-arm robot: a straight and accurate pool stroke and a box flipping task using two chopsticks as tools.

am

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]