Header logo is


2016


no image
Two-body problem of core-region coupled magnetic vortex stacks

Hänze, M., Adolff, C. F., Velten, S., Weigand, M., Meier, G.

{Physical Review B}, 93(5), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI [BibTex]

2016


DOI [BibTex]


no image
Irreproducibility in hydrogen storage material research

Broom, D. P., Hirscher, M.

{Energy \& Environmental Science}, 9(11):3368-3380, Royal Society of Chemistry, Cambridge, UK, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Effect of surface configurations on the room-temperature magnetism of pure ZnO

Chen, Y., Wang, Z., Leineweber, A., Baier, J., Tietze, T., Phillipp, F., Schütz, G., Goering, E.

{Journal of Materials Chemistry C}, 4(19):4166-4175, Royal Society of Chemistry, London, UK, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
On the synthesis and microstructure analysis of high performance MnBi

Chen, Y., Sawatzki, S., Ener, S., Sepehri-Amin, H., Leineweber, A., Gregori, G., Qu, F., Muralidhar, S., Ohkubo, T., Hono, K., Gutfleisch, O., Kronmüller, H., Schütz, G., Goering, E.

{AIP Advances}, 6(12), 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The role of individual defects on the magnetic screening of HTSC films

Ruoß, S., Stahl, C., Weigand, M., Zahn, P., Bayer, J., Schütz, G., Albrecht, J.

{New Journal of Physics}, 18(10), IOP Publishing, Bristol, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic switching of nanoscale antidot lattices

Wiedwald, U., Gräfe, J., Lebecki, K. M., Skripnik, M., Haering, F., Schütz, G., Ziemann, P., Goering, E., Nowak, U.

{Beilstein Journal of Nanotechnology}, 7, pages: 733-750, Beilstein-Institut, Frankfurt am Main, 2016 (article)

mms

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Hydrogen-based energy storage (IEA-HIA Task 32)

Buckley, C. E., Chen, P., van Hassel, B. A., Hirscher, M.

{Applied Physics A}, 122(2), Springer-Verlag Heidelberg, Heidelberg, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Local domain-wall velocity engineering via tailored potential landscapes in ferromagnetic rings

Richter, K., Krone, A., Mawass, M., Krüger, B., Weigand, M., Stoll, H., Schütz, G., Kläui, M.

{Physical Review Applied}, 5(2), American Physical Society, College Park, Md. [u.a.], 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Geometric control of the magnetization reversal in antidot lattices with perpendicular magnetic anisotropy

Gräfe, J., Weigand, M., Träger, N., Schütz, G., Goering, E. J., Skripnik, M., Nowak, U., Haering, F., Ziemann, P., Wiedwald, U.

{Physical Review B}, 93(10), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Growth and characterizationof large weak topological insulator Bi2Tel single crystal by Bismuth self-flux method

Ryu, G., Son, K., Schütz, G.

{Journal of Crystal Growth}, 440, pages: 26-30, North-Holland, Amsterdam, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature

Moreau-Luchaire, C., Moutafis, C., Reyren, N., Sampaio, J., Vaz, C. A. F., Van Horne, N., Bouzehouane, K., Garcia, K., Deranlot, C., Warnicke, P., Wohlhüter, P., George, J.-M., Weigand, M., Raabe, J., Cros, V., Fert, A.

{Nature Nanotechnology}, 11(5):444-448, Nature Publishing Group, London, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Surface defect free growth of a spin dimer TlCuCl3 compound crystals and investigations on its optical and magnetic properties

Ryu, G., Son, K.

{Journal of Solid State Chemistry}, 237, pages: 358-363, Academic Press, Orlando, Fla., 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Physical and mathematical justification of the numerical Brillouin zone integration of the Boltzmann rate equation by Gaussian smearing

Illg, C., Haag, M., Teeny, N., Wirth, J., Fähnle, M.

{Journal of Theoretical and Applied Physics}, 10(1):1-6, Springer, Berlin, Heidelberg, Tehran, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Helium und Hydrogen Isotope Adsorption and Separation in Metal-Organic Frameworks

Zaiser, Ingrid

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2016 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Pinned orbital moments - A new contribution to magnetic anisotropy

Audehm, P., Schmidt, M., Brück, S., Tietze, T., Gräfe, J., Macke, S., Schütz, G., Goering, E.

{Scientific Reports}, 6, Nature Publishing Group, London, UK, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comparative study of ALD SiO2 thin films for optical applications

Pfeiffer, K., Shestaeva, S., Bingel, A., Munzert, P., Ghazaryan, L., van Helvoirt, C., Kessels, W. M. M., Sanli, U. T., Grévent, C., Schütz, G., Putkonen, M., Buchanan, I., Jensen, L., Ristau, D., Tünnermann, A., Szeghalmi, A.

{Optical materials express}, 6(2):660-670, OSA, Washington, DC, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Combined first-order reversal curve and x-ray microscopy investigation of magnetization reversal mechanisms in hexagonal antidot lattices

Gräfe, J., Weigand, M., Stahl, C., Träger, N., Kopp, M., Schütz, G., Goering, E. J., Haering, F., Ziemann, P., Wiedwald, U.

{Physical Review B}, 93(1), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Switching probabilities of magnetic vortex core reversal studied by table top magneto optic Kerr microscopy

Dieterle, G., Gangwar, A., Gräfe, J., Noske, M., Förster, J., Woltersdorf, G., Stoll, H., Back, C. H., Schütz, G.

{Applied Physics Letters}, 108(2), American Institute of Physics, Melville, NY, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ultrafast demagnetization after femtosecond laser pulses: Transfer of angular momentum from the electronic system to magnetoelastic spin-phonon modes

Tsatsoulis, T., Illg, C., Haag, M., Müller, B. Y., Zhang, L., Fähnle, M.

{Physical Review B}, 93(13), American Physical Society, Woodbury, NY, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Developments in the Ni-Nb-Zr amorphous alloy membranes

Sarker, S., Chandra, D., Hirscher, M., Dolan, M., Isheim, D., Wermer, J., Viano, D., Baricco, M., Udovic, T. J., Grant, D., Palumbo, O., Paolone, A., Cantelli, R.

{Applied Physics A}, 122(3), Springer-Verlag Heidelberg, Heidelberg, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Resistance to the transport of H2 through the external surface of as-made and modified silicalite-1 (MFI)

Kalantzopoulos, G. N., Policicchio, A., Maccallini, E., Krkljus, I., Ciuchi, F., Hirscher, M., Agostino, R. G., Golemme, G.

{Microporous and Mesoporous Materials}, 220, pages: 290-297, Elsevier, Amsterdam, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Observation of pseudopartial grain boundary wetting in the NdFeB-based alloy

Straumal, B. B., Mazilkin, A. A., Protasova, S. G., Schütz, G., Straumal, A. B., Baretzky, B.

{Journal of Materials Engineering and Performance}, 25(8):3303-3309, 2016 (article)

mms

DOI [BibTex]

DOI [BibTex]

2015


Thumb xl zhou
Exploiting Object Similarity in 3D Reconstruction

Zhou, C., Güney, F., Wang, Y., Geiger, A.

In International Conference on Computer Vision (ICCV), December 2015 (inproceedings)

Abstract
Despite recent progress, reconstructing outdoor scenes in 3D from movable platforms remains a highly difficult endeavor. Challenges include low frame rates, occlusions, large distortions and difficult lighting conditions. In this paper, we leverage the fact that the larger the reconstructed area, the more likely objects of similar type and shape will occur in the scene. This is particularly true for outdoor scenes where buildings and vehicles often suffer from missing texture or reflections, but share similarity in 3D shape. We take advantage of this shape similarity by locating objects using detectors and jointly reconstructing them while learning a volumetric model of their shape. This allows us to reduce noise while completing missing surfaces as objects of similar shape benefit from all observations for the respective category. We evaluate our approach with respect to LIDAR ground truth on a novel challenging suburban dataset and show its advantages over the state-of-the-art.

avg ps

pdf suppmat [BibTex]

2015


pdf suppmat [BibTex]


Thumb xl philip
FollowMe: Efficient Online Min-Cost Flow Tracking with Bounded Memory and Computation

Lenz, P., Geiger, A., Urtasun, R.

In International Conference on Computer Vision (ICCV), International Conference on Computer Vision (ICCV), December 2015 (inproceedings)

Abstract
One of the most popular approaches to multi-target tracking is tracking-by-detection. Current min-cost flow algorithms which solve the data association problem optimally have three main drawbacks: they are computationally expensive, they assume that the whole video is given as a batch, and they scale badly in memory and computation with the length of the video sequence. In this paper, we address each of these issues, resulting in a computationally and memory-bounded solution. First, we introduce a dynamic version of the successive shortest-path algorithm which solves the data association problem optimally while reusing computation, resulting in faster inference than standard solvers. Second, we address the optimal solution to the data association problem when dealing with an incoming stream of data (i.e., online setting). Finally, we present our main contribution which is an approximate online solution with bounded memory and computation which is capable of handling videos of arbitrary length while performing tracking in real time. We demonstrate the effectiveness of our algorithms on the KITTI and PETS2009 benchmarks and show state-of-the-art performance, while being significantly faster than existing solvers.

avg ps

pdf suppmat video project [BibTex]

pdf suppmat video project [BibTex]


Thumb xl grassmanteaser
Scalable Robust Principal Component Analysis using Grassmann Averages

Hauberg, S., Feragen, A., Enficiaud, R., Black, M.

IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI), December 2015 (article)

Abstract
In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA are not scalable. We note that in a zero-mean dataset, each observation spans a one-dimensional subspace, giving a point on the Grassmann manifold. We show that the average subspace corresponds to the leading principal component for Gaussian data. We provide a simple algorithm for computing this Grassmann Average (GA), and show that the subspace estimate is less sensitive to outliers than PCA for general distributions. Because averages can be efficiently computed, we immediately gain scalability. We exploit robust averaging to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. The resulting Trimmed Grassmann Average (TGA) is appropriate for computer vision because it is robust to pixel outliers. The algorithm has linear computational complexity and minimal memory requirements. We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie; a task beyond any current method. Source code is available online.

ps sf

preprint pdf from publisher supplemental Project Page [BibTex]

preprint pdf from publisher supplemental Project Page [BibTex]


Thumb xl intrinsicdepth teaser1
Intrinsic Depth: Improving Depth Transfer with Intrinsic Images

Kong, N., Black, M. J.

In IEEE International Conference on Computer Vision (ICCV), pages: 3514-3522, International Conference on Computer Vision (ICCV), December 2015 (inproceedings)

Abstract
We formulate the estimation of dense depth maps from video sequences as a problem of intrinsic image estimation. Our approach synergistically integrates the estimation of multiple intrinsic images including depth, albedo, shading, optical flow, and surface contours. We build upon an example-based framework for depth estimation that uses label transfer from a database of RGB and depth pairs. We combine this with a method that extracts consistent albedo and shading from video. In contrast to raw RGB values, albedo and shading provide a richer, more physical, foundation for depth transfer. Additionally we train a new contour detector to predict surface boundaries from albedo, shading, and pixel values and use this to improve the estimation of depth boundaries. We also integrate sparse structure from motion with our method to improve the metric accuracy of the estimated depth maps. We evaluate our Intrinsic Depth method quantitatively by estimating depth from videos in the NYU RGB-D and SUN3D datasets. We find that combining the estimation of multiple intrinsic images improves depth estimation relative to the baseline method.

ps

pdf suppmat YouTube official video poster Project Page Project Page [BibTex]

pdf suppmat YouTube official video poster Project Page Project Page [BibTex]


Thumb xl bogo iccv2015 teaser
Detailed Full-Body Reconstructions of Moving People from Monocular RGB-D Sequences

Bogo, F., Black, M. J., Loper, M., Romero, J.

In International Conference on Computer Vision (ICCV), pages: 2300-2308, December 2015 (inproceedings)

Abstract
We accurately estimate the 3D geometry and appearance of the human body from a monocular RGB-D sequence of a user moving freely in front of the sensor. Range data in each frame is first brought into alignment with a multi-resolution 3D body model in a coarse-to-fine process. The method then uses geometry and image texture over time to obtain accurate shape, pose, and appearance information despite unconstrained motion, partial views, varying resolution, occlusion, and soft tissue deformation. Our novel body model has variable shape detail, allowing it to capture faces with a high-resolution deformable head model and body shape with lower-resolution. Finally we combine range data from an entire sequence to estimate a high-resolution displacement map that captures fine shape details. We compare our recovered models with high-resolution scans from a professional system and with avatars created by a commercial product. We extract accurate 3D avatars from challenging motion sequences and even capture soft tissue dynamics.

ps

Video pdf Project Page Project Page [BibTex]

Video pdf Project Page Project Page [BibTex]


Thumb xl thumb3
3D Object Reconstruction from Hand-Object Interactions

Tzionas, D., Gall, J.

In International Conference on Computer Vision (ICCV), pages: 729-737, International Conference on Computer Vision (ICCV), December 2015 (inproceedings)

Abstract
Recent advances have enabled 3d object reconstruction approaches using a single off-the-shelf RGB-D camera. Although these approaches are successful for a wide range of object classes, they rely on stable and distinctive geometric or texture features. Many objects like mechanical parts, toys, household or decorative articles, however, are textureless and characterized by minimalistic shapes that are simple and symmetric. Existing in-hand scanning systems and 3d reconstruction techniques fail for such symmetric objects in the absence of highly distinctive features. In this work, we show that extracting 3d hand motion for in-hand scanning effectively facilitates the reconstruction of even featureless and highly symmetric objects and we present an approach that fuses the rich additional information of hands into a 3d reconstruction pipeline, significantly contributing to the state-of-the-art of in-hand scanning.

ps

pdf Project's Website Video Spotlight Extended Abstract YouTube DOI Project Page [BibTex]

pdf Project's Website Video Spotlight Extended Abstract YouTube DOI Project Page [BibTex]


Thumb xl splitbodieswebteaser2
SMPL: A Skinned Multi-Person Linear Model

Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M. J.

ACM Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1-248:16, ACM, New York, NY, October 2015 (article)

Abstract
We present a learned model of human body shape and pose-dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex-based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity-dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. We quantitatively evaluate variants of SMPL using linear or dual-quaternion blend skinning and show that both are more accurate than a Blend-SCAPE model trained on the same data. We also extend SMPL to realistically model dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

ps

pdf video code/model errata DOI Project Page Project Page [BibTex]

pdf video code/model errata DOI Project Page Project Page [BibTex]


Thumb xl thumb
Proceedings of the 37th German Conference on Pattern Recognition

Gall, J., Gehler, P., Leibe, B.

Springer, German Conference on Pattern Recognition, October 2015 (proceedings)

ps

GCPR conference website [BibTex]

GCPR conference website [BibTex]


Thumb xl teaser
Towards Probabilistic Volumetric Reconstruction using Ray Potentials

(Best Paper Award)

Ulusoy, A. O., Geiger, A., Black, M. J.

In 3D Vision (3DV), 2015 3rd International Conference on, pages: 10-18, Lyon, October 2015 (inproceedings)

Abstract
This paper presents a novel probabilistic foundation for volumetric 3-d reconstruction. We formulate the problem as inference in a Markov random field, which accurately captures the dependencies between the occupancy and appearance of each voxel, given all input images. Our main contribution is an approximate highly parallelized discrete-continuous inference algorithm to compute the marginal distributions of each voxel's occupancy and appearance. In contrast to the MAP solution, marginals encode the underlying uncertainty and ambiguity in the reconstruction. Moreover, the proposed algorithm allows for a Bayes optimal prediction with respect to a natural reconstruction loss. We compare our method to two state-of-the-art volumetric reconstruction algorithms on three challenging aerial datasets with LIDAR ground truth. Our experiments demonstrate that the proposed algorithm compares favorably in terms of reconstruction accuracy and the ability to expose reconstruction uncertainty.

avg ps

code YouTube pdf suppmat DOI Project Page [BibTex]

code YouTube pdf suppmat DOI Project Page [BibTex]


Thumb xl sap2015
Perception of Strength and Power of Realistic Male Characters

Wellerdiek, A. C., Breidt, M., Geuss, M. N., Streuber, S., Kloos, U., Black, M. J., Mohler, B. J.

In Proc. ACM SIGGRAPH Symposium on Applied Perception, SAP’15, pages: 7-14, ACM, New York, NY, September 2015 (inproceedings)

Abstract
We investigated the influence of body shape and pose on the perception of physical strength and social power for male virtual characters. In the first experiment, participants judged the physical strength of varying body shapes, derived from a statistical 3D body model. Based on these ratings, we determined three body shapes (weak, average, and strong) and animated them with a set of power poses for the second experiment. Participants rated how strong or powerful they perceived virtual characters of varying body shapes that were displayed in different poses. Our results show that perception of physical strength was mainly driven by the shape of the body. However, the social attribute of power was influenced by an interaction between pose and shape. Specifically, the effect of pose on power ratings was greater for weak body shapes. These results demonstrate that a character with a weak shape can be perceived as more powerful when in a high-power pose.

ps

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Thumb xl dynateaser
Dyna: A Model of Dynamic Human Shape in Motion

Pons-Moll, G., Romero, J., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 34(4):120:1-120:14, ACM, August 2015 (article)

Abstract
To look human, digital full-body avatars need to have soft tissue deformations like those of real people. We learn a model of soft-tissue deformations from examples using a high-resolution 4D capture system and a method that accurately registers a template mesh to sequences of 3D scans. Using over 40,000 scans of ten subjects, we learn how soft tissue motion causes mesh triangles to deform relative to a base 3D body model. Our Dyna model uses a low-dimensional linear subspace to approximate soft-tissue deformation and relates the subspace coefficients to the changing pose of the body. Dyna uses a second-order auto-regressive model that predicts soft-tissue deformations based on previous deformations, the velocity and acceleration of the body, and the angular velocities and accelerations of the limbs. Dyna also models how deformations vary with a person’s body mass index (BMI), producing different deformations for people with different shapes. Dyna realistically represents the dynamics of soft tissue for previously unseen subjects and motions. We provide tools for animators to modify the deformations and apply them to new stylized characters.

ps

pdf preprint video data DOI Project Page Project Page [BibTex]

pdf preprint video data DOI Project Page Project Page [BibTex]


Thumb xl invgraphicsdemo
The Informed Sampler: A Discriminative Approach to Bayesian Inference in Generative Computer Vision Models

Jampani, V., Nowozin, S., Loper, M., Gehler, P. V.

In Special Issue on Generative Models in Computer Vision and Medical Imaging, 136, pages: 32-44, Elsevier, July 2015 (inproceedings)

Abstract
Computer vision is hard because of a large variability in lighting, shape, and texture; in addition the image signal is non-additive due to occlusion. Generative models promised to account for this variability by accurately modelling the image formation process as a function of latent variables with prior beliefs. Bayesian posterior inference could then, in principle, explain the observation. While intuitively appealing, generative models for computer vision have largely failed to deliver on that promise due to the difficulty of posterior inference. As a result the community has favored efficient discriminative approaches. We still believe in the usefulness of generative models in computer vision, but argue that we need to leverage existing discriminative or even heuristic computer vision methods. We implement this idea in a principled way in our informed sampler and in careful experiments demonstrate it on challenging models which contain renderer programs as their components. The informed sampler, using simple discriminative proposals based on existing computer vision technology achieves dramatic improvements in inference. Our approach enables a new richness in generative models that was out of reach with existing inference technology.

ps

arXiv-preprint pdf DOI Project Page [BibTex]

arXiv-preprint pdf DOI Project Page [BibTex]


Thumb xl objs2acts
Linking Objects to Actions: Encoding of Target Object and Grasping Strategy in Primate Ventral Premotor Cortex

Vargas-Irwin, C. E., Franquemont, L., Black, M. J., Donoghue, J. P.

Journal of Neuroscience, 35(30):10888-10897, July 2015 (article)

Abstract
Neural activity in ventral premotor cortex (PMv) has been associated with the process of matching perceived objects with the motor commands needed to grasp them. It remains unclear how PMv networks can flexibly link percepts of objects affording multiple grasp options into a final desired hand action. Here, we use a relational encoding approach to track the functional state of PMv neuronal ensembles in macaque monkeys through the process of passive viewing, grip planning, and grasping movement execution. We used objects affording multiple possible grip strategies. The task included separate instructed delay periods for object presentation and grip instruction. This approach allowed us to distinguish responses elicited by the visual presentation of the objects from those associated with selecting a given motor plan for grasping. We show that PMv continuously incorporates information related to object shape and grip strategy as it becomes available, revealing a transition from a set of ensemble states initially most closely related to objects, to a new set of ensemble patterns reflecting unique object-grip combinations. These results suggest that PMv dynamically combines percepts, gradually navigating toward activity patterns associated with specific volitional actions, rather than directly mapping perceptual object properties onto categorical grip representations. Our results support the idea that PMv is part of a network that dynamically computes motor plans from perceptual information. Significance Statement: The present work demonstrates that the activity of groups of neurons in primate ventral premotor cortex reflects information related to visually presented objects, as well as the motor strategy used to grasp them, linking individual objects to multiple possible grips. PMv could provide useful control signals for neuroprosthetic assistive devices designed to interact with objects in a flexible way.

ps

publisher link DOI Project Page [BibTex]

publisher link DOI Project Page [BibTex]


Thumb xl silviateaser
The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose

Zuffi, S., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2015), pages: 3537-3546, June 2015 (inproceedings)

Abstract
We propose a new 3D model of the human body that is both realistic and part-based. The body is represented by a graphical model in which nodes of the graph correspond to body parts that can independently translate and rotate in 3D as well as deform to capture pose-dependent shape variations. Pairwise potentials define a “stitching cost” for pulling the limbs apart, giving rise to the stitched puppet model (SPM). Unlike existing realistic 3D body models, the distributed representation facilitates inference by allowing the model to more effectively explore the space of poses, much like existing 2D pictorial structures models. We infer pose and body shape using a form of particle-based max-product belief propagation. This gives the SPM the realism of recent 3D body models with the computational advantages of part-based models. We apply the SPM to two challenging problems involving estimating human shape and pose from 3D data. The first is the FAUST mesh alignment challenge (http://faust.is.tue.mpg.de/), where ours is the first method to successfully align all 3D meshes. The second involves estimating pose and shape from crude visual hull representations of complex body movements.

ps

pdf Extended Abstract poster code/project video DOI Project Page [BibTex]

pdf Extended Abstract poster code/project video DOI Project Page [BibTex]


Thumb xl img displet
Displets: Resolving Stereo Ambiguities using Object Knowledge

Güney, F., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2015, pages: 4165-4175, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2015 (inproceedings)

Abstract
Stereo techniques have witnessed tremendous progress over the last decades, yet some aspects of the problem still remain challenging today. Striking examples are reflecting and textureless surfaces which cannot easily be recovered using traditional local regularizers. In this paper, we therefore propose to regularize over larger distances using object-category specific disparity proposals (displets) which we sample using inverse graphics techniques based on a sparse disparity estimate and a semantic segmentation of the image. The proposed displets encode the fact that objects of certain categories are not arbitrarily shaped but typically exhibit regular structures. We integrate them as non-local regularizer for the challenging object class 'car' into a superpixel based CRF framework and demonstrate its benefits on the KITTI stereo evaluation.

avg ps

pdf abstract suppmat [BibTex]

pdf abstract suppmat [BibTex]


Thumb xl img sceneflow
Object Scene Flow for Autonomous Vehicles

Menze, M., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2015, pages: 3061-3070, IEEE, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2015 (inproceedings)

Abstract
This paper proposes a novel model and dataset for 3D scene flow estimation with an application to autonomous driving. Taking advantage of the fact that outdoor scenes often decompose into a small number of independently moving objects, we represent each element in the scene by its rigid motion parameters and each superpixel by a 3D plane as well as an index to the corresponding object. This minimal representation increases robustness and leads to a discrete-continuous CRF where the data term decomposes into pairwise potentials between superpixels and objects. Moreover, our model intrinsically segments the scene into its constituting dynamic components. We demonstrate the performance of our model on existing benchmarks as well as a novel realistic dataset with scene flow ground truth. We obtain this dataset by annotating 400 dynamic scenes from the KITTI raw data collection using detailed 3D CAD models for all vehicles in motion. Our experiments also reveal novel challenges which can't be handled by existing methods.

avg ps

pdf abstract suppmat DOI [BibTex]

pdf abstract suppmat DOI [BibTex]


Thumb xl ijazteaser
Pose-Conditioned Joint Angle Limits for 3D Human Pose Reconstruction

Akhter, I., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2015), pages: 1446-1455, June 2015 (inproceedings)

Abstract
The estimation of 3D human pose from 2D joint locations is central to many vision problems involving the analysis of people in images and video. To address the fact that the problem is inherently ill posed, many methods impose a prior over human poses. Unfortunately these priors admit invalid poses because they do not model how joint-limits vary with pose. Here we make two key contributions. First, we collected a motion capture dataset that explores a wide range of human poses. From this we learn a pose-dependent model of joint limits that forms our prior. The dataset and the prior will be made publicly available. Second, we define a general parameterization of body pose and a new, multistage, method to estimate 3D pose from 2D joint locations that uses an over-complete dictionary of human poses. Our method shows good generalization while avoiding impossible poses. We quantitatively compare our method with recent work and show state-of-the-art results on 2D to 3D pose estimation using the CMU mocap dataset. We also show superior results on manual annotations on real images and automatic part-based detections on the Leeds sports pose dataset.

ps

pdf Extended Abstract video project/data/code poster DOI Project Page Project Page [BibTex]

pdf Extended Abstract video project/data/code poster DOI Project Page Project Page [BibTex]


Thumb xl jonasteaser
Efficient Sparse-to-Dense Optical Flow Estimation using a Learned Basis and Layers

Wulff, J., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2015), pages: 120-130, June 2015 (inproceedings)

Abstract
We address the elusive goal of estimating optical flow both accurately and efficiently by adopting a sparse-to-dense approach. Given a set of sparse matches, we regress to dense optical flow using a learned set of full-frame basis flow fields. We learn the principal components of natural flow fields using flow computed from four Hollywood movies. Optical flow fields are then compactly approximated as a weighted sum of the basis flow fields. Our new PCA-Flow algorithm robustly estimates these weights from sparse feature matches. The method runs in under 300ms/frame on the MPI-Sintel dataset using a single CPU and is more accurate and significantly faster than popular methods such as LDOF and Classic+NL. The results, however, are too smooth for some applications. Consequently, we develop a novel sparse layered flow method in which each layer is represented by PCA-flow. Unlike existing layered methods, estimation is fast because it uses only sparse matches. We combine information from different layers into a dense flow field using an image-aware MRF. The resulting PCA-Layers method runs in 3.6s/frame, is significantly more accurate than PCA-flow and achieves state-of-the-art performance in occluded regions on MPI-Sintel.

ps

pdf Extended Abstract Supplemental Material Poster Code Project Page Project Page [BibTex]


Thumb xl teaser
Permutohedral Lattice CNNs

Kiefel, M., Jampani, V., Gehler, P. V.

In ICLR Workshop Track, ICLR, May 2015 (inproceedings)

Abstract
This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation. Its use allows for a generalization of the convolution type found in current (spatial) convolutional network architectures.

ei ps

pdf link (url) [BibTex]

pdf link (url) [BibTex]


Thumb xl jampani15aistats teaser
Consensus Message Passing for Layered Graphical Models

Jampani, V., Eslami, S. M. A., Tarlow, D., Kohli, P., Winn, J.

In Eighteenth International Conference on Artificial Intelligence and Statistics (AISTATS), 38, pages: 425-433, JMLR Workshop and Conference Proceedings, Eighteenth International Conference on Artificial Intelligence and Statistics, May 2015 (inproceedings)

Abstract
Generative models provide a powerful framework for probabilistic reasoning. However, in many domains their use has been hampered by the practical difficulties of inference. This is particularly the case in computer vision, where models of the imaging process tend to be large, loopy and layered. For this reason bottom-up conditional models have traditionally dominated in such domains. We find that widely-used, general-purpose message passing inference algorithms such as Expectation Propagation (EP) and Variational Message Passing (VMP) fail on the simplest of vision models. With these models in mind, we introduce a modification to message passing that learns to exploit their layered structure by passing 'consensus' messages that guide inference towards good solutions. Experiments on a variety of problems show that the proposed technique leads to significantly more accurate inference results, not only when compared to standard EP and VMP, but also when compared to competitive bottom-up conditional models.

ps

online pdf supplementary link (url) [BibTex]

online pdf supplementary link (url) [BibTex]


Thumb xl silvia phd
Shape Models of the Human Body for Distributed Inference

Zuffi, S.

Brown University, May 2015 (phdthesis)

Abstract
In this thesis we address the problem of building shape models of the human body, in 2D and 3D, which are realistic and efficient to use. We focus our efforts on the human body, which is highly articulated and has interesting shape variations, but the approaches we present here can be applied to generic deformable and articulated objects. To address efficiency, we constrain our models to be part-based and have a tree-structured representation with pairwise relationships between connected parts. This allows the application of methods for distributed inference based on message passing. To address realism, we exploit recent advances in computer graphics that represent the human body with statistical shape models learned from 3D scans. We introduce two articulated body models, a 2D model, named Deformable Structures (DS), which is a contour-based model parameterized for 2D pose and projected shape, and a 3D model, named Stitchable Puppet (SP), which is a mesh-based model parameterized for 3D pose, pose-dependent deformations and intrinsic body shape. We have successfully applied the models to interesting and challenging problems in computer vision and computer graphics, namely pose estimation from static images, pose estimation from video sequences, pose and shape estimation from 3D scan data. This advances the state of the art in human pose and shape estimation and suggests that carefully de ned realistic models can be important for computer vision. More work at the intersection of vision and graphics is thus encouraged.

ps

PDF [BibTex]


Thumb xl screen shot 2015 10 14 at 08.57.57
Multi-view and 3D Deformable Part Models

Pepik, B., Stark, M., Gehler, P., Schiele, B.

Pattern Analysis and Machine Intelligence, 37(11):14, IEEE, March 2015 (article)

Abstract
As objects are inherently 3-dimensional, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2], 3D object classes [3], Pascal3D+ [4], Pascal VOC 2007 [5], EPFL multi-view cars [6]).

ps

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl th teaser
From Scans to Models: Registration of 3D Human Shapes Exploiting Texture Information

Bogo, F.

University of Padova, March 2015 (phdthesis)

Abstract
New scanning technologies are increasing the importance of 3D mesh data, and of algorithms that can reliably register meshes obtained from multiple scans. Surface registration is important e.g. for building full 3D models from partial scans, identifying and tracking objects in a 3D scene, creating statistical shape models. Human body registration is particularly important for many applications, ranging from biomedicine and robotics to the production of movies and video games; but obtaining accurate and reliable registrations is challenging, given the articulated, non-rigidly deformable structure of the human body. In this thesis, we tackle the problem of 3D human body registration. We start by analyzing the current state of the art, and find that: a) most registration techniques rely only on geometric information, which is ambiguous on flat surface areas; b) there is a lack of adequate datasets and benchmarks in the field. We address both issues. Our contribution is threefold. First, we present a model-based registration technique for human meshes that combines geometry and surface texture information to provide highly accurate mesh-to-mesh correspondences. Our approach estimates scene lighting and surface albedo, and uses the albedo to construct a high-resolution textured 3D body model that is brought into registration with multi-camera image data using a robust matching term. Second, by leveraging our technique, we present FAUST (Fine Alignment Using Scan Texture), a novel dataset collecting 300 high-resolution scans of 10 people in a wide range of poses. FAUST is the first dataset providing both real scans and automatically computed, reliable "ground-truth" correspondences between them. Third, we explore possible uses of our approach in dermatology. By combining our registration technique with a melanocytic lesion segmentation algorithm, we propose a system that automatically detects new or evolving lesions over almost the entire body surface, thus helping dermatologists identify potential melanomas. We conclude this thesis investigating the benefits of using texture information to establish frame-to-frame correspondences in dynamic monocular sequences captured with consumer depth cameras. We outline a novel approach to reconstruct realistic body shape and appearance models from dynamic human performances, and show preliminary results on challenging sequences captured with a Kinect.

ps

[BibTex]


Thumb xl thesis teaser
Long Range Motion Estimation and Applications

Sevilla-Lara, L.

Long Range Motion Estimation and Applications, University of Massachusetts Amherst, University of Massachusetts Amherst, Febuary 2015 (phdthesis)

Abstract
Finding correspondences between images underlies many computer vision problems, such as optical flow, tracking, stereovision and alignment. Finding these correspondences involves formulating a matching function and optimizing it. This optimization process is often gradient descent, which avoids exhaustive search, but relies on the assumption of being in the basin of attraction of the right local minimum. This is often the case when the displacement is small, and current methods obtain very accurate results for small motions. However, when the motion is large and the matching function is bumpy this assumption is less likely to be true. One traditional way of avoiding this abruptness is to smooth the matching function spatially by blurring the images. As the displacement becomes larger, the amount of blur required to smooth the matching function becomes also larger. This averaging of pixels leads to a loss of detail in the image. Therefore, there is a trade-off between the size of the objects that can be tracked and the displacement that can be captured. In this thesis we address the basic problem of increasing the size of the basin of attraction in a matching function. We use an image descriptor called distribution fields (DFs). By blurring the images in DF space instead of in pixel space, we in- crease the size of the basin attraction with respect to traditional methods. We show competitive results using DFs both in object tracking and optical flow. Finally we demonstrate an application of capturing large motions for temporal video stitching.

ps

[BibTex]

[BibTex]


Thumb xl ssimssmall
Spike train SIMilarity Space (SSIMS): A framework for single neuron and ensemble data analysis

Vargas-Irwin, C. E., Brandman, D. M., Zimmermann, J. B., Donoghue, J. P., Black, M. J.

Neural Computation, 27(1):1-31, MIT Press, January 2015 (article)

Abstract
We present a method to evaluate the relative similarity of neural spiking patterns by combining spike train distance metrics with dimensionality reduction. Spike train distance metrics provide an estimate of similarity between activity patterns at multiple temporal resolutions. Vectors of pair-wise distances are used to represent the intrinsic relationships between multiple activity patterns at the level of single units or neuronal ensembles. Dimensionality reduction is then used to project the data into concise representations suitable for clustering analysis as well as exploratory visualization. Algorithm performance and robustness are evaluated using multielectrode ensemble activity data recorded in behaving primates. We demonstrate how Spike train SIMilarity Space (SSIMS) analysis captures the relationship between goal directions for an 8-directional reaching task and successfully segregates grasp types in a 3D grasping task in the absence of kinematic information. The algorithm enables exploration of virtually any type of neural spiking (time series) data, providing similarity-based clustering of neural activity states with minimal assumptions about potential information encoding models.

ps

pdf: publisher site pdf: author's proof DOI Project Page [BibTex]

pdf: publisher site pdf: author's proof DOI Project Page [BibTex]


Thumb xl untitled
Efficient Facade Segmentation using Auto-Context

Jampani, V., Gadde, R., Gehler, P. V.

In Applications of Computer Vision (WACV), 2015 IEEE Winter Conference on, pages: 1038-1045, IEEE, WACV,, January 2015 (inproceedings)

Abstract
In this paper we propose a system for the problem of facade segmentation. Building facades are highly structured images and consequently most methods that have been proposed for this problem, aim to make use of this strong prior information. We are describing a system that is almost domain independent and consists of standard segmentation methods. A sequence of boosted decision trees is stacked using auto-context features and learned using the stacked generalization technique. We find that this, albeit standard, technique performs better, or equals, all previous published empirical results on all available facade benchmark datasets. The proposed method is simple to implement, easy to extend, and very efficient at test time inference.

ps

website pdf supplementary IEEE page link (url) DOI Project Page [BibTex]

website pdf supplementary IEEE page link (url) DOI Project Page [BibTex]


Thumb xl flowcap im
FlowCap: 2D Human Pose from Optical Flow

Romero, J., Loper, M., Black, M. J.

In Pattern Recognition, Proc. 37th German Conference on Pattern Recognition (GCPR), LNCS 9358, pages: 412-423, Springer, GCPR, 2015 (inproceedings)

Abstract
We estimate 2D human pose from video using only optical flow. The key insight is that dense optical flow can provide information about 2D body pose. Like range data, flow is largely invariant to appearance but unlike depth it can be directly computed from monocular video. We demonstrate that body parts can be detected from dense flow using the same random forest approach used by the Microsoft Kinect. Unlike range data, however, when people stop moving, there is no optical flow and they effectively disappear. To address this, our FlowCap method uses a Kalman filter to propagate body part positions and ve- locities over time and a regression method to predict 2D body pose from part centers. No range sensor is required and FlowCap estimates 2D human pose from monocular video sources containing human motion. Such sources include hand-held phone cameras and archival television video. We demonstrate 2D body pose estimation in a range of scenarios and show that the method works with real-time optical flow. The results suggest that optical flow shares invariances with range data that, when complemented with tracking, make it valuable for pose estimation.

ps

video pdf preprint Project Page Project Page [BibTex]

video pdf preprint Project Page Project Page [BibTex]


no image
Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric metod, and analytical models

Kloutse, A. F., Zacharia, R., Cossement, D., Chahine, R., Balderas-Xicohténcatl, R., Oh, H., Streppel, B., Schlichtenmayer, M., Hirscher, M.

{Applied Physics A}, 121(4):1417-1424, Springer-Verlag Heidelberg, Heidelberg, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]