Header logo is


2013


no image
Learning Skills with Motor Primitives

Peters, J., Kober, J., Mülling, K., Kroemer, O., Neumann, G.

In Proceedings of the 16th Yale Workshop on Adaptive and Learning Systems, 2013 (inproceedings)

ei

[BibTex]

2013


[BibTex]


no image
Scalable Influence Estimation in Continuous-Time Diffusion Networks

Du, N., Song, L., Gomez Rodriguez, M., Zha, H.

In Advances in Neural Information Processing Systems 26, pages: 3147-3155, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Rapid Distance-Based Outlier Detection via Sampling

Sugiyama, M., Borgwardt, KM.

In Advances in Neural Information Processing Systems 26, pages: 467-475, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Probabilistic Movement Primitives

Paraschos, A., Daniel, C., Peters, J., Neumann, G.

In Advances in Neural Information Processing Systems 26, pages: 2616-2624, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Causal Inference on Time Series using Restricted Structural Equation Models

Peters, J., Janzing, D., Schölkopf, B.

In Advances in Neural Information Processing Systems 26, pages: 154-162, (Editors: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Regression-tree Tuning in a Streaming Setting

Kpotufe, S., Orabona, F.

In Advances in Neural Information Processing Systems 26, pages: 1788-1796, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Density estimation from unweighted k-nearest neighbor graphs: a roadmap

von Luxburg, U., Alamgir, M.

In Advances in Neural Information Processing Systems 26, pages: 225-233, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Automatic Malaria Diagnosis system

Mehrjou, A., Abbasian, T., Izadi, M.

In First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pages: 205-211, 2013 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
AGILITY – Dynamic Full Body Locomotion and Manipulation with Autonomous Legged Robots

Hutter, M., Bloesch, M., Buchli, J., Semini, C., Bazeille, S., Righetti, L., Bohg, J.

In 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages: 1-4, IEEE, Linköping, Sweden, 2013 (inproceedings)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Objective Functions for Manipulation

Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In 2013 IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
We present an approach to learning objective functions for robotic manipulation based on inverse reinforcement learning. Our path integral inverse reinforcement learning algorithm can deal with high-dimensional continuous state-action spaces, and only requires local optimality of demonstrated trajectories. We use L 1 regularization in order to achieve feature selection, and propose an efficient algorithm to minimize the resulting convex objective function. We demonstrate our approach by applying it to two core problems in robotic manipulation. First, we learn a cost function for redundancy resolution in inverse kinematics. Second, we use our method to learn a cost function over trajectories, which is then used in optimization-based motion planning for grasping and manipulation tasks. Experimental results show that our method outperforms previous algorithms in high-dimensional settings.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Abstraction in Decision-Makers with Limited Information Processing Capabilities

Genewein, T, Braun, DA

pages: 1-9, NIPS Workshop Planning with Information Constraints for Control, Reinforcement Learning, Computational Neuroscience, Robotics and Games, December 2013 (conference)

Abstract
A distinctive property of human and animal intelligence is the ability to form abstractions by neglecting irrelevant information which allows to separate structure from noise. From an information theoretic point of view abstractions are desirable because they allow for very efficient information processing. In artificial systems abstractions are often implemented through computationally costly formations of groups or clusters. In this work we establish the relation between the free-energy framework for decision-making and rate-distortion theory and demonstrate how the application of rate-distortion for decision-making leads to the emergence of abstractions. We argue that abstractions are induced due to a limit in information processing capacity.

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Task Error Models for Manipulation

Pastor, P., Kalakrishnan, M., Binney, J., Kelly, J., Righetti, L., Sukhatme, G. S., Schaal, S.

In 2013 IEEE Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
Precise kinematic forward models are important for robots to successfully perform dexterous grasping and manipulation tasks, especially when visual servoing is rendered infeasible due to occlusions. A lot of research has been conducted to estimate geometric and non-geometric parameters of kinematic chains to minimize reconstruction errors. However, kinematic chains can include non-linearities, e.g. due to cable stretch and motor-side encoders, that result in significantly different errors for different parts of the state space. Previous work either does not consider such non-linearities or proposes to estimate non-geometric parameters of carefully engineered models that are robot specific. We propose a data-driven approach that learns task error models that account for such unmodeled non-linearities. We argue that in the context of grasping and manipulation, it is sufficient to achieve high accuracy in the task relevant state space. We identify this relevant state space using previously executed joint configurations and learn error corrections for those. Therefore, our system is developed to generate subsequent executions that are similar to previous ones. The experiments show that our method successfully captures the non-linearities in the head kinematic chain (due to a counterbalancing spring) and the arm kinematic chains (due to cable stretch) of the considered experimental platform, see Fig. 1. The feasibility of the presented error learning approach has also been evaluated in independent DARPA ARM-S testing contributing to successfully complete 67 out of 72 grasping and manipulation tasks.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Bounded Rational Decision-Making in Changing Environments

Grau-Moya, J, Braun, DA

pages: 1-9, NIPS Workshop Planning with Information Constraints for Control, Reinforcement Learning, Computational Neuroscience, Robotics and Games, December 2013 (conference)

Abstract
A perfectly rational decision-maker chooses the best action with the highest utility gain from a set of possible actions. The optimality principles that describe such decision processes do not take into account the computational costs of finding the optimal action. Bounded rational decision-making addresses this problem by specifically trading off information-processing costs and expected utility. Interestingly, a similar trade-off between energy and entropy arises when describing changes in thermodynamic systems. This similarity has been recently used to describe bounded rational agents. Crucially, this framework assumes that the environment does not change while the decision-maker is computing the optimal policy. When this requirement is not fulfilled, the decision-maker will suffer inefficiencies in utility, that arise because the current policy is optimal for an environment in the past. Here we borrow concepts from non-equilibrium thermodynamics to quantify these inefficiencies and illustrate with simulations its relationship with computational resources.

ei

link (url) [BibTex]

link (url) [BibTex]

2005


no image
Kernel ICA for Large Scale Problems

Jegelka, S., Gretton, A., Achlioptas, D.

In pages: -, NIPS Workshop on Large Scale Kernel Machines, December 2005 (inproceedings)

ei

Web [BibTex]

2005


Web [BibTex]


no image
Kernel methods for dependence testing in LFP-MUA

Gretton, A., Belitski, A., Murayama, Y., Schölkopf, B., Logothetis, N.

35(689.17), 35th Annual Meeting of the Society for Neuroscience (Neuroscience), November 2005 (poster)

Abstract
A fundamental problem in neuroscience is determining whether or not particular neural signals are dependent. The correlation is the most straightforward basis for such tests, but considerable work also focuses on the mutual information (MI), which is capable of revealing dependence of higher orders that the correlation cannot detect. That said, there are other measures of dependence that share with the MI an ability to detect dependence of any order, but which can be easier to compute in practice. We focus in particular on tests based on the functional covariance, which derive from work originally accomplished in 1959 by Renyi. Conceptually, our dependence tests work by computing the covariance between (infinite dimensional) vectors of nonlinear mappings of the observations being tested, and then determining whether this covariance is zero - we call this measure the constrained covariance (COCO). When these vectors are members of universal reproducing kernel Hilbert spaces, we can prove this covariance to be zero only when the variables being tested are independent. The greatest advantage of these tests, compared with the mutual information, is their simplicity – when comparing two signals, we need only take the largest eigenvalue (or the trace) of a product of two matrices of nonlinearities, where these matrices are generally much smaller than the number of observations (and are very simple to construct). We compare the mutual information, the COCO, and the correlation in the context of finding changes in dependence between the LFP and MUA signals in the primary visual cortex of the anaesthetized macaque, during the presentation of dynamic natural stimuli. We demonstrate that the MI and COCO reveal dependence which is not detected by the correlation alone (which we prove by artificially removing all correlation between the signals, and then testing their dependence with COCO and the MI); and that COCO and the MI give results consistent with each other on our data.

ei

Web [BibTex]

Web [BibTex]


no image
Training Support Vector Machines with Multiple Equality Constraints

Kienzle, W., Schölkopf, B.

In Proceedings of the 16th European Conference on Machine Learning, Lecture Notes in Computer Science, Vol. 3720, pages: 182-193, (Editors: JG Carbonell and J Siekmann), Springer, Berlin, Germany, ECML, November 2005 (inproceedings)

Abstract
In this paper we present a primal-dual decomposition algorithm for support vector machine training. As with existing methods that use very small working sets (such as Sequential Minimal Optimization (SMO), Successive Over-Relaxation (SOR) or the Kernel Adatron (KA)), our method scales well, is straightforward to implement, and does not require an external QP solver. Unlike SMO, SOR and KA, the method is applicable to a large number of SVM formulations regardless of the number of equality constraints involved. The effectiveness of our algorithm is demonstrated on a more difficult SVM variant in this respect, namely semi-parametric support vector regression.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Measuring Statistical Dependence with Hilbert-Schmidt Norms

Gretton, A., Bousquet, O., Smola, A., Schoelkopf, B.

In Algorithmic Learning Theory, Lecture Notes in Computer Science, Vol. 3734, pages: 63-78, (Editors: S Jain and H-U Simon and E Tomita), Springer, Berlin, Germany, 16th International Conference ALT, October 2005 (inproceedings)

Abstract
We propose an independence criterion based on the eigenspectrum of covariance operators in reproducing kernel Hilbert spaces (RKHSs), consisting of an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator (we term this a Hilbert-Schmidt Independence Criterion, or HSIC). This approach has several advantages, compared with previous kernel-based independence criteria. First, the empirical estimate is simpler than any other kernel dependence test, and requires no user-defined regularisation. Second, there is a clearly defined population quantity which the empirical estimate approaches in the large sample limit, with exponential convergence guaranteed between the two: this ensures that independence tests based on {methodname} do not suffer from slow learning rates. Finally, we show in the context of independent component analysis (ICA) that the performance of HSIC is competitive with that of previously published kernel-based criteria, and of other recently published ICA methods.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
An Analysis of the Anti-Learning Phenomenon for the Class Symmetric Polyhedron

Kowalczyk, A., Chapelle, O.

In Algorithmic Learning Theory: 16th International Conference, pages: 78-92, Algorithmic Learning Theory, October 2005 (inproceedings)

Abstract
This paper deals with an unusual phenomenon where most machine learning algorithms yield good performance on the training set but systematically worse than random performance on the test set. This has been observed so far for some natural data sets and demonstrated for some synthetic data sets when the classification rule is learned from a small set of training samples drawn from some high dimensional space. The initial analysis presented in this paper shows that anti-learning is a property of data sets and is quite distinct from overfitting of a training data. Moreover, the analysis leads to a specification of some machine learning procedures which can overcome anti-learning and generate ma- chines able to classify training and test data consistently.

ei

PDF [BibTex]

PDF [BibTex]


no image
Rapid animal detection in natural scenes: Critical features are local

Wichmann, F., Rosas, P., Gegenfurtner, K.

Journal of Vision, 5(8):376, Fifth Annual Meeting of the Vision Sciences Society (VSS), September 2005 (poster)

Abstract
Thorpe et al (Nature 381, 1996) first showed how rapidly human observers are able to classify natural images as to whether they contain an animal or not. Whilst the basic result has been replicated using different response paradigms (yes-no versus forced-choice), modalities (eye movements versus button presses) as well as while measuring neurophysiological correlates (ERPs), it is still unclear which image features support this rapid categorisation. Recently Torralba and Oliva (Network: Computation in Neural Systems, 14, 2003) suggested that simple global image statistics can be used to predict seemingly complex decisions about the absence and/or presence of objects in natural scences. They show that the information contained in a small number (N=16) of spectral principal components (SPC)—principal component analysis (PCA) applied to the normalised power spectra of the images—is sufficient to achieve approximately 80% correct animal detection in natural scenes. Our goal was to test whether human observers make use of the power spectrum when rapidly classifying natural scenes. We measured our subjects' ability to detect animals in natural scenes as a function of presentation time (13 to 167 msec); images were immediately followed by a noise mask. In one condition we used the original images, in the other images whose power spectra were equalised (each power spectrum was set to the mean power spectrum over our ensemble of 1476 images). Thresholds for 75% correct animal detection were in the region of 20–30 msec for all observers, independent of the power spectrum of the images: this result makes it very unlikely that human observers make use of the global power spectrum. Taken together with the results of Gegenfurtner, Braun & Wichmann (Journal of Vision [abstract], 2003), showing the robustness of animal detection to global phase noise, we conclude that humans use local features, like edges and contours, in rapid animal detection.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning an Interest Operator from Eye Movements

Kienzle, W., Franz, M., Wichmann, F., Schölkopf, B.

International Workshop on Bioinspired Information Processing (BIP 2005), 2005, pages: 1, September 2005 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Classification of natural scenes using global image statistics

Drewes, J., Wichmann, F., Gegenfurtner, K.

Journal of Vision, 5(8):602, Fifth Annual Meeting of the Vision Sciences Society (VSS), September 2005 (poster)

Abstract
The algorithmic classification of complex, natural scenes is generally considered a difficult task due to the large amount of information conveyed by natural images. Work by Simon Thorpe and colleagues showed that humans are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. This suggests that the relevant information for classification can be extracted at comparatively limited computational cost. One hypothesis is that global image statistics such as the amplitude spectrum could underly fast image classification (Johnson & Olshausen, Journal of Vision, 2003; Torralba & Oliva, Network: Comput. Neural Syst., 2003). We used linear discriminant analysis to classify a set of 11.000 images into animal and non-animal images. After applying a DFT to the image, we put the Fourier spectrum into bins (8 orientations with 6 frequency bands each). Using all bins, classification performance on the Fourier spectrum reached 70%. However, performance was similar (67%) when only the high spatial frequency information was used and decreased steadily at lower spatial frequencies, reaching a minimum (50%) for the low spatial frequency information. Similar results were obtained when all bins were used on spatially filtered images. A detailed analysis of the classification weights showed that a relatively high level of performance (67%) could also be obtained when only 2 bins were used, namely the vertical and horizontal orientation at the highest spatial frequency band. Our results show that in the absence of sophisticated machine learning techniques, animal detection in natural scenes is limited to rather modest levels of performance, far below those of human observers. If limiting oneself to global image statistics such as the DFT then mostly information at the highest spatial frequencies is useful for the task. This is analogous to the results obtained with human observers on filtered images (Kirchner et al, VSS 2004).

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Building Sparse Large Margin Classifiers

Wu, M., Schölkopf, B., BakIr, G.

In Proceedings of the 22nd International Conference on Machine Learning, pages: 996-1003, (Editors: L De Raedt and S Wrobel ), ACM, New York, NY, USA, ICML , August 2005 (inproceedings)

Abstract
This paper presents an approach to build Sparse Large Margin Classifiers (SLMC) by adding one more constraint to the standard Support Vector Machine (SVM) training problem. The added constraint explicitly controls the sparseness of the classifier and an approach is provided to solve the formulated problem. When considering the dual of this problem, it can be seen that building an SLMC is equivalent to constructing an SVM with a modified kernel function. Further analysis of this kernel function indicates that the proposed approach essentially finds a discriminating subspace that can be spanned by a small number of vectors, and in this subspace different classes of data are linearly well separated. Experimental results over several classification benchmarks show that in most cases the proposed approach outperforms the state-of-art sparse learning algorithms.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning from Labeled and Unlabeled Data on a Directed Graph

Zhou, D., Huang, J., Schölkopf, B.

In Proceedings of the 22nd International Conference on Machine Learning, pages: 1041 -1048, (Editors: L De Raedt and S Wrobel), ACM, New York, NY, USA, ICML, August 2005 (inproceedings)

Abstract
We propose a general framework for learning from labeled and unlabeled data on a directed graph in which the structure of the graph including the directionality of the edges is considered. The time complexity of the algorithm derived from this framework is nearly linear due to recently developed numerical techniques. In the absence of labeled instances, this framework can be utilized as a spectral clustering method for directed graphs, which generalizes the spectral clustering approach for undirected graphs. We have applied our framework to real-world web classification problems and obtained encouraging results.

ei

PostScript PDF [BibTex]

PostScript PDF [BibTex]


no image
Regularization on Discrete Spaces

Zhou, D., Schölkopf, B.

In Pattern Recognition, Lecture Notes in Computer Science, Vol. 3663, pages: 361-368, (Editors: WG Kropatsch and R Sablatnig and A Hanbury), Springer, Berlin, Germany, 27th DAGM Symposium, August 2005 (inproceedings)

Abstract
We consider the classification problem on a finite set of objects. Some of them are labeled, and the task is to predict the labels of the remaining unlabeled ones. Such an estimation problem is generally referred to as transductive inference. It is well-known that many meaningful inductive or supervised methods can be derived from a regularization framework, which minimizes a loss function plus a regularization term. In the same spirit, we propose a general discrete regularization framework defined on finite object sets, which can be thought of as the discrete analogue of classical regularization theory. A family of transductive inference schemes is then systemically derived from the framework, including our earlier algorithm for transductive inference, with which we obtained encouraging results on many practical classification problems. The discrete regularization framework is built on the discrete analysis and geometry developed by ourselves, in which a number of discrete differential operators of various orders are constructed, which can be thought of as the discrete analogue of their counterparts in the continuous case.

ei

PDF PostScript DOI [BibTex]

PDF PostScript DOI [BibTex]


no image
Large Margin Non-Linear Embedding

Zien, A., Candela, J.

In ICML 2005, pages: 1065-1072, (Editors: De Raedt, L. , S. Wrobel), ACM Press, New York, NY, USA, 22nd International Conference on Machine Learning, August 2005 (inproceedings)

Abstract
It is common in classification methods to first place data in a vector space and then learn decision boundaries. We propose reversing that process: for fixed decision boundaries, we ``learn‘‘ the location of the data. This way we (i) do not need a metric (or even stronger structure) -- pairwise dissimilarities suffice; and additionally (ii) produce low-dimensional embeddings that can be analyzed visually. We achieve this by combining an entropy-based embedding method with an entropy-based version of semi-supervised logistic regression. We present results for clustering and semi-supervised classification.

ei

PDF PostScript Web DOI [BibTex]

PDF PostScript Web DOI [BibTex]


no image
Face Detection: Efficient and Rank Deficient

Kienzle, W., BakIr, G., Franz, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 673-680, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
This paper proposes a method for computing fast approximations to support vector decision functions in the field of object detection. In the present approach we are building on an existing algorithm where the set of support vectors is replaced by a smaller, so-called reduced set of synthesized input space points. In contrast to the existing method that finds the reduced set via unconstrained optimization, we impose a structural constraint on the synthetic points such that the resulting approximations can be evaluated via separable filters. For applications that require scanning an entire image, this decreases the computational complexity of a scan by a significant amount. We present experimental results on a standard face detection database.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Methods Towards Invasive Human Brain Computer Interfaces

Lal, T., Hinterberger, T., Widman, G., Schröder, M., Hill, J., Rosenstiel, W., Elger, C., Schölkopf, B., Birbaumer, N.

In Advances in Neural Information Processing Systems 17, pages: 737-744, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
During the last ten years there has been growing interest in the development of Brain Computer Interfaces (BCIs). The field has mainly been driven by the needs of completely paralyzed patients to communicate. With a few exceptions, most human BCIs are based on extracranial electroencephalography (EEG). However, reported bit rates are still low. One reason for this is the low signal-to-noise ratio of the EEG. We are currently investigating if BCIs based on electrocorticography (ECoG) are a viable alternative. In this paper we present the method and examples of intracranial EEG recordings of three epilepsy patients with electrode grids placed on the motor cortex. The patients were asked to repeatedly imagine movements of two kinds, e.g., tongue or finger movements. We analyze the classifiability of the data using Support Vector Machines (SVMs) and Recursive Channel Elimination (RCE).

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Machine Learning Approach to Conjoint Analysis

Chapelle, O., Harchaoui, Z.

In Advances in Neural Information Processing Systems 17, pages: 257-264, (Editors: Saul, L.K. , Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
Choice-based conjoint analysis builds models of consumers preferences over products with answers gathered in questionnaires. Our main goal is to bring tools from the machine learning community to solve more efficiently this problem. Thus, we propose two algorithms to estimate quickly and accurately consumer preferences.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
An Auditory Paradigm for Brain-Computer Interfaces

Hill, N., Lal, T., Bierig, K., Birbaumer, N., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 569-576, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
Motivated by the particular problems involved in communicating with "locked-in" paralysed patients, we aim to develop a brain-computer interface that uses auditory stimuli. We describe a paradigm that allows a user to make a binary decision by focusing attention on one of two concurrent auditory stimulus sequences. Using Support Vector Machine classification and Recursive Channel Elimination on the independent components of averaged event-related potentials, we show that an untrained user's EEG data can be classified with an encouragingly high level of accuracy. This suggests that it is possible for users to modulate EEG signals in a single trial by the conscious direction of attention, well enough to be useful in BCI.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Matrix Exponential Gradient Updates for On-line Learning and Bregman Projection

Tsuda, K., Rätsch, G., Warmuth, M.

In Advances in Neural Information Processing Systems 17, pages: 1425-1432, (Editors: Saul, L.K. , Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
We address the problem of learning a symmetric positive definite matrix. The central issue is to design parameter updates that preserve positive definiteness. Our updates are motivated with the von Neumann divergence. Rather than treating the most general case, we focus on two key applications that exemplify our methods: On-line learning with a simple square loss and finding a symmetric positive definite matrix subject to symmetric linear constraints. The updates generalize the Exponentiated Gradient (EG) update and AdaBoost, respectively: the parameter is now a symmetric positive definite matrix of trace one instead of a probability vector (which in this context is a diagonal positive definite matrix with trace one). The generalized updates use matrix logarithms and exponentials to preserve positive definiteness. Most importantly, we show how the analysis of each algorithm generalizes to the non-diagonal case. We apply both new algorithms, called the Matrix Exponentiated Gradient (MEG) update and DefiniteBoost, to learn a kernel matrix from distance measurements.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Machine Learning Applied to Perception: Decision Images for Classification

Wichmann, F., Graf, A., Simoncelli, E., Bülthoff, H., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 1489-1496, (Editors: LK, Saul and Y, Weiss and L, Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
We study gender discrimination of human faces using a combination of psychophysical classification and discrimination experiments together with methods from machine learning. We reduce the dimensionality of a set of face images using principal component analysis, and then train a set of linear classifiers on this reduced representation (linear support vector machines (SVMs), relevance vector machines (RVMs), Fisher linear discriminant (FLD), and prototype (prot) classifiers) using human classification data. Because we combine a linear preprocessor with linear classifiers, the entire system acts as a linear classifier, allowing us to visualise the decision-image corresponding to the normal vector of the separating hyperplanes (SH) of each classifier. We predict that the female-to-maleness transition along the normal vector for classifiers closely mimicking human classification (SVM and RVM 1) should be faster than the transition along any other direction. A psychophysical discrimination experiment using the decision images as stimuli is consistent with this prediction.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Breaking SVM Complexity with Cross-Training

Bakir, G., Bottou, L., Weston, J.

In Advances in Neural Information Processing Systems 17, pages: 81-88, (Editors: Saul, L.K. , Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
We propose an algorithm for selectively removing examples from the training set using probabilistic estimates related to editing algorithms (Devijver and Kittler82). The procedure creates a separable distribution of training examples with minimal impact on the decision boundary position. It breaks the linear dependency between the number of SVs and the number of training examples, and sharply reduces the complexity of SVMs during both the training and prediction stages.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Implicit Wiener series for higher-order image analysis

Franz, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 465-472, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
The computation of classical higher-order statistics such as higher-order moments or spectra is difficult for images due to the huge number of terms to be estimated and interpreted. We propose an alternative approach in which multiplicative pixel interactions are described by a series of Wiener functionals. Since the functionals are estimated implicitly via polynomial kernels, the combinatorial explosion associated with the classical higher-order statistics is avoided. First results show that image structures such as lines or corners can be predicted correctly, and that pixel interactions up to the order of five play an important role in natural images.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Limits of Spectral Clustering

von Luxburg, U., Bousquet, O., Belkin, M.

In Advances in Neural Information Processing Systems 17, pages: 857-864, (Editors: Saul, L. K., Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
An important aspect of clustering algorithms is whether the partitions constructed on finite samples converge to a useful clustering of the whole data space as the sample size increases. This paper investigates this question for normalized and unnormalized versions of the popular spectral clustering algorithm. Surprisingly, the convergence of unnormalized spectral clustering is more difficult to handle than the normalized case. Even though recently some first results on the convergence of normalized spectral clustering have been obtained, for the unnormalized case we have to develop a completely new approach combining tools from numerical integration, spectral and perturbation theory, and probability. It turns out that while in the normalized case, spectral clustering usually converges to a nice partition of the data space, in the unnormalized case the same only holds under strong additional assumptions which are not always satisfied. We conclude that our analysis gives strong evidence for the superiority of normalized spectral clustering. It also provides a basis for future exploration of other Laplacian-based methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Semi-supervised Learning on Directed Graphs

Zhou, D., Schölkopf, B., Hofmann, T.

In Advances in Neural Information Processing Systems 17, pages: 1633-1640, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
Given a directed graph in which some of the nodes are labeled, we investigate the question of how to exploit the link structure of the graph to infer the labels of the remaining unlabeled nodes. To that extent we propose a regularization framework for functions defined over nodes of a directed graph that forces the classification function to change slowly on densely linked subgraphs. A powerful, yet computationally simple classification algorithm is derived within the proposed framework. The experimental evaluation on real-world Web classification problems demonstrates encouraging results that validate our approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Splines with non positive kernels

Canu, S., Ong, CS., Mary, X.

In 5th International ISAAC Congress, pages: 1-10, (Editors: Begehr, H. G.W., F. Nicolosi), World Scientific, Singapore, 5th International ISAAC Congress, July 2005 (inproceedings)

Abstract
Non parametric regressions methods can be presented in two main clusters. The one of smoothing splines methods requiring positive kernels and the other one known as Nonparametric Kernel Regression allowing the use of non positive kernels such as the Epanechnikov kernel. We propose a generalization of the smoothing spline method to include kernels which are still symmetric but not positive semi definite (they are called indefinite). The general relationship between smoothing spline, Reproducing Kernel Hilbert Spaces and positive kernels no longer exists with indefinite kernel. Instead they are associated with functional spaces called Reproducing Kernel Krein Spaces (RKKS) embedded with an indefinite inner product and thus not directly associated with a norm. Smothing splines in RKKS have many of the interesting properties of splines in RKHS, such as orthogon ality, projection, representer theorem and generalization bounds. We show that smoothing splines can be defined in RKKS as the regularized solution of the interpolation problem. Since no norm is available in a RKKS, Tikhonov regularization cannot be defined. Instead, we proposed to use iterative methods of conjugate gradient type with early stopping as regularization mechanism. Several iterative algorithms were collected which can be used to solve the optimization problems associated with learning in indefinite spaces. Some preliminary experiments with indefinite kernels for spline smoothing are reported revealing the computational efficiency of the approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel Methods for Implicit Surface Modeling

Schölkopf, B., Giesen, J., Spalinger, S.

In Advances in Neural Information Processing Systems 17, pages: 1193-1200, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
We describe methods for computing an implicit model of a hypersurface that is given only by a finite sampling. The methods work by mapping the sample points into a reproducing kernel Hilbert space and then determining regions in terms of hyperplanes.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Comparative evaluation of Independent Components Analysis algorithms for isolating target-relevant information in brain-signal classification

Hill, N., Schröder, M., Lal, T., Schölkopf, B.

Brain-Computer Interface Technology, 3, pages: 95, June 2005 (poster)

ei

PDF [BibTex]


no image
Classification of natural scenes using global image statistics

Drewes, J., Wichmann, F., Gegenfurtner, K.

47, pages: 88, 47. Tagung Experimentell Arbeitender Psychologen, April 2005 (poster)

ei

[BibTex]

[BibTex]


no image
Classification of Natural Scenes using Global Image Statistics

Drewes, J., Wichmann, F., Gegenfurtner, K.

8, pages: 88, 8th T{\"u}bingen Perception Conference (TWK), February 2005 (poster)

Abstract
The algorithmic classification of complex, natural scenes is generally considered a difficult task due to the large amount of information conveyed by natural images. Work by Simon Thorpe and colleagues showed that humans are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. This suggests that the relevant information for classification can be extracted at comparatively limited computational cost. One hypothesis is that global image statistics such as the amplitude spectrum could underly fast image classification (Johnson & Olshausen, Journal of Vision, 2003; Torralba & Oliva, Network: Comput. Neural Syst., 2003). We used linear discriminant analysis to classify a set of 11.000 images into animal and nonanimal images. After applying a DFT to the image, we put the Fourier spectrum of each image into 48 bins (8 orientations with 6 frequency bands). Using all of these bins, classification performance on the Fourier spectrum reached 70%. In an iterative procedure, we then removed the bins whose absence caused the smallest damage to the classification performance (one bin per iteration). Notably, performance stayed at about 70% until less then 6 bins were left. A detailed analysis of the classification weights showed that a comparatively high level of performance (67%) could also be obtained when only 2 bins were used, namely the vertical orientations at the highest spatial frequency band. When using only a single frequency band (8 bins) we found that 67% classification performance could be reached when only the high spatial frequency information was used, which decreased steadily at lower spatial frequencies, reaching a minimum (50%) for the low spatial frequency information. Similar results were obtained when all bins were used on spatially pre-filtered images. Our results show that in the absence of sophisticated machine learning techniques, animal detection in natural scenes is limited to rather modest levels of performance, far below those of human observers. If limiting oneself to global image statistics such as the DFT then mostly information at the highest spatial frequencies is useful for the task. This is analogous to the results obtained with human observers on filtered images (Kirchner et al, VSS 2004).

ei

Web [BibTex]

Web [BibTex]


no image
Efficient Adaptive Sampling of the Psychometric Function by Maximizing Information Gain

Tanner, T., Hill, N., Rasmussen, C., Wichmann, F.

8, pages: 109, (Editors: Bülthoff, H. H., H. A. Mallot, R. Ulrich and F. A. Wichmann), 8th T{\"u}bingen Perception Conference (TWK), February 2005 (poster)

Abstract
A psychometric function can be described by its shape and four parameters: position or threshold, slope or width, false alarm rate or chance level, and miss or lapse rate. Depending on the parameters of interest some points on the psychometric function may be more informative than others. Adaptive methods attempt to place trials on the most informative points based on the data collected in previous trials. We introduce a new adaptive bayesian psychometric method which collects data for any set of parameters with high efficency. It places trials by minimizing the expected entropy [1] of the posterior pdf over a set of possible stimuli. In contrast to most other adaptive methods it is neither limited to threshold measurement nor to forced-choice designs. Nuisance parameters can be included in the estimation and lead to less biased estimates. The method supports block designs which do not harm the performance when a sufficient number of trials are performed. Block designs are useful for control of response bias and short term performance shifts such as adaptation. We present the results of evaluations of the method by computer simulations and experiments with human observers. In the simulations we investigated the role of parametric assumptions, the quality of different point estimates, the effect of dynamic termination criteria and many other settings. [1] Kontsevich, L.L. and Tyler, C.W. (1999): Bayesian adaptive estimation of psychometric slope and threshold. Vis. Res. 39 (16), 2729-2737.

ei

Web [BibTex]

Web [BibTex]


no image
Bayesian Inference for Psychometric Functions

Kuss, M., Jäkel, F., Wichmann, F.

8, pages: 106, (Editors: Bülthoff, H. H., H. A. Mallot, R. Ulrich and F. A. Wichmann), 8th T{\"u}bingen Perception Conference (TWK), February 2005 (poster)

Abstract
In psychophysical studies of perception the psychometric function is used to model the relation between the physical stimulus intensity and the observer's ability to detect or discriminate between stimuli of different intensities. We propose the use of Bayesian inference to extract the information contained in experimental data to learn about the parameters of psychometric functions. Since Bayesian inference cannot be performed analytically we use a Markov chain Monte Carlo method to generate samples from the posterior distribution over parameters. These samples can be used to estimate Bayesian confidence intervals and other characteristics of the posterior distribution. We compare our approach with traditional methods based on maximum-likelihood parameter estimation combined with parametric bootstrap techniques for confidence interval estimation. Experiments indicate that Bayesian inference methods are superior to bootstrap-based methods and are thus the method of choice for estimating the psychometric function and its confidence-intervals.

ei

Web [BibTex]

Web [BibTex]


no image
Active Learning for Parzen Window Classifier

Chapelle, O.

In AISTATS 2005, pages: 49-56, (Editors: Cowell, R. , Z. Ghahramani), Tenth International Workshop on Artificial Intelligence and Statistics (AI & Statistics), January 2005 (inproceedings)

Abstract
The problem of active learning is approached in this paper by minimizing directly an estimate of the expected test error. The main difficulty in this ``optimal'' strategy is that output probabilities need to be estimated accurately. We suggest here different methods for estimating those efficiently. In this context, the Parzen window classifier is considered because it is both simple and probabilistic. The analysis of experimental results highlights that regularization is a key ingredient for this strategy.

ei

Web [BibTex]

Web [BibTex]


no image
Semi-Supervised Classification by Low Density Separation

Chapelle, O., Zien, A.

In AISTATS 2005, pages: 57-64, (Editors: Cowell, R. , Z. Ghahramani), Tenth International Workshop on Artificial Intelligence and Statistics (AI & Statistics), January 2005 (inproceedings)

Abstract
We believe that the cluster assumption is key to successful semi-supervised learning. Based on this, we propose three semi-supervised algorithms: 1. deriving graph-based distances that emphazise low density regions between clusters, followed by training a standard SVM; 2. optimizing the Transductive SVM objective function, which places the decision boundary in low density regions, by gradient descent; 3. combining the first two to make maximum use of the cluster assumption. We compare with state of the art algorithms and demonstrate superior accuracy for the latter two methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel Constrained Covariance for Dependence Measurement

Gretton, A., Smola, A., Bousquet, O., Herbrich, R., Belitski, A., Augath, M., Murayama, Y., Pauls, J., Schölkopf, B., Logothetis, N.

In Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics, pages: 112-119, (Editors: R Cowell, R and Z Ghahramani), AISTATS, January 2005 (inproceedings)

Abstract
We discuss reproducing kernel Hilbert space (RKHS)-based measures of statistical dependence, with emphasis on constrained covariance (COCO), a novel criterion to test dependence of random variables. We show that COCO is a test for independence if and only if the associated RKHSs are universal. That said, no independence test exists that can distinguish dependent and independent random variables in all circumstances. Dependent random variables can result in a COCO which is arbitrarily close to zero when the source densities are highly non-smooth. All current kernel-based independence tests share this behaviour. We demonstrate exponential convergence between the population and empirical COCO. Finally, we use COCO as a measure of joint neural activity between voxels in MRI recordings of the macaque monkey, and compare the results to the mutual information and the correlation. We also show the effect of removing breathing artefacts from the MRI recording.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Hilbertian Metrics and Positive Definite Kernels on Probability Measures

Hein, M., Bousquet, O.

In AISTATS 2005, pages: 136-143, (Editors: Cowell, R. , Z. Ghahramani), Tenth International Workshop on Artificial Intelligence and Statistics (AI & Statistics), January 2005 (inproceedings)

Abstract
We investigate the problem of defining Hilbertian metrics resp. positive definite kernels on probability measures, continuing previous work. This type of kernels has shown very good results in text classification and has a wide range of possible applications. In this paper we extend the two-parameter family of Hilbertian metrics of Topsoe such that it now includes all commonly used Hilbertian metrics on probability measures. This allows us to do model selection among these metrics in an elegant and unified way. Second we investigate further our approach to incorporate similarity information of the probability space into the kernel. The analysis provides a better understanding of these kernels and gives in some cases a more efficient way to compute them. Finally we compare all proposed kernels in two text and two image classification problems.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Intrinsic Dimensionality Estimation of Submanifolds in Euclidean space

Hein, M., Audibert, Y.

In Proceedings of the 22nd International Conference on Machine Learning, pages: 289 , (Editors: De Raedt, L. , S. Wrobel), ICML Bonn, 2005 (inproceedings)

Abstract
We present a new method to estimate the intrinsic dimensionality of a submanifold M in Euclidean space from random samples. The method is based on the convergence rates of a certain U-statistic on the manifold. We solve at least partially the question of the choice of the scale of the data. Moreover the proposed method is easy to implement, can handle large data sets and performs very well even for small sample sizes. We compare the proposed method to two standard estimators on several artificial as well as real data sets.

ei

PDF [BibTex]

PDF [BibTex]


no image
Large Scale Genomic Sequence SVM Classifiers

Sonnenburg, S., Rätsch, G., Schölkopf, B.

In Proceedings of the 22nd International Conference on Machine Learning, pages: 849-856, (Editors: L De Raedt and S Wrobel), ACM, New York, NY, USA, ICML, 2005 (inproceedings)

Abstract
In genomic sequence analysis tasks like splice site recognition or promoter identification, large amounts of training sequences are available, and indeed needed to achieve sufficiently high classification performances. In this work we study two recently proposed and successfully used kernels, namely the Spectrum kernel and the Weighted Degree kernel (WD). In particular, we suggest several extensions using Suffix Trees and modi cations of an SMO-like SVM training algorithm in order to accelerate the training of the SVMs and their evaluation on test sequences. Our simulations show that for the spectrum kernel and WD kernel, large scale SVM training can be accelerated by factors of 20 and 4 times, respectively, while using much less memory (e.g. no kernel caching). The evaluation on new sequences is often several thousand times faster using the new techniques (depending on the number of Support Vectors). Our method allows us to train on sets as large as one million sequences.

ei

PDF [BibTex]

PDF [BibTex]


no image
Joint Kernel Maps

Weston, J., Schölkopf, B., Bousquet, O.

In Proceedings of the 8th InternationalWork-Conference on Artificial Neural Networks, LNCS 3512, pages: 176-191, (Editors: J Cabestany and A Prieto and F Sandoval), Springer, Berlin Heidelberg, Germany, IWANN, 2005 (inproceedings)

Abstract
We develop a methodology for solving high dimensional dependency estimation problems between pairs of data types, which is viable in the case where the output of interest has very high dimension, e.g., thousands of dimensions. This is achieved by mapping the objects into continuous or discrete spaces, using joint kernels. Known correlations between input and output can be defined by such kernels, some of which can maintain linearity in the outputs to provide simple (closed form) pre-images. We provide examples of such kernels and empirical results.

ei

PostScript DOI [BibTex]

PostScript DOI [BibTex]


no image
Analysis of Some Methods for Reduced Rank Gaussian Process Regression

Quinonero Candela, J., Rasmussen, C.

In Switching and Learning in Feedback Systems, pages: 98-127, (Editors: Murray Smith, R. , R. Shorten), Springer, Berlin, Germany, European Summer School on Multi-Agent Control, 2005 (inproceedings)

Abstract
While there is strong motivation for using Gaussian Processes (GPs) due to their excellent performance in regression and classification problems, their computational complexity makes them impractical when the size of the training set exceeds a few thousand cases. This has motivated the recent proliferation of a number of cost-effective approximations to GPs, both for classification and for regression. In this paper we analyze one popular approximation to GPs for regression: the reduced rank approximation. While generally GPs are equivalent to infinite linear models, we show that Reduced Rank Gaussian Processes (RRGPs) are equivalent to finite sparse linear models. We also introduce the concept of degenerate GPs and show that they correspond to inappropriate priors. We show how to modify the RRGP to prevent it from being degenerate at test time. Training RRGPs consists both in learning the covariance function hyperparameters and the support set. We propose a method for learning hyperparameters for a given support set. We also review the Sparse Greedy GP (SGGP) approximation (Smola and Bartlett, 2001), which is a way of learning the support set for given hyperparameters based on approximating the posterior. We propose an alternative method to the SGGP that has better generalization capabilities. Finally we make experiments to compare the different ways of training a RRGP. We provide some Matlab code for learning RRGPs.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]