Header logo is


2015


no image
Assessment of tumor heterogeneity using unsupervised graph based clustering of multi-modality imaging data

Katiyar, P., Divine, M. R., Pichler, B. J., Disselhorst, J. A.

European Molecular Imaging Meeting, 2015 (poster)

ei

[BibTex]

2015


[BibTex]


no image
Assessment of murine brain tissue shrinkage caused by different histological fixatives using magnetic resonance and computed tomography imaging

Wehrl, H. F., Bezrukov, I., Wiehr, S., Lehnhoff, M., Fuchs, K., Mannheim, J. G., Quintanilla-Martinez, L., Kneilling, M., Pichler, B. J., Sauter, A. W.

Histology and Histopathology, 30(5):601-613, 2015 (article)

ei

[BibTex]

[BibTex]


no image
Cosmology from Cosmic Shear with DES Science Verification Data

Abbott, T., Abdalla, F. B., Allam, S., Amara, A., Annis, J., Armstrong, R., Bacon, D., Banerji, M., Bauer, A. H., Baxter, E., others,

arXiv preprint arXiv:1507.05552, 2015 (techreport)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
BACKSHIFT: Learning causal cyclic graphs from unknown shift interventions

Rothenhäusler, D., Heinze, C., Peters, J., Meinshausen, N.

Advances in Neural Information Processing Systems 28, pages: 1513-1521, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Particle Gibbs for Infinite Hidden Markov Models

Tripuraneni*, N., Gu*, S., Ge, H., Ghahramani, Z.

Advances in Neural Information Processing Systems 28, pages: 2395-2403, (Editors: Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett), 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015, *equal contribution (conference)

ei

PDF [BibTex]

PDF [BibTex]


no image
Improved Bayesian Information Criterion for Mixture Model Selection

Mehrjou, A., Hosseini, R., Araabi, B.

Pattern Recognition Letters, 69, pages: 22-27, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl 2016 peer grading
Peer grading in a course on algorithms and data structures

Sajjadi, M. S. M., Alamgir, M., von Luxburg, U.

Workshop on Crowdsourcing and Machine Learning (CrowdML) Workshop on Machine Learning for Education (ML4Ed) at at the 32th International Conference on Machine Learning (ICML), 2015 (conference)

ei

Arxiv [BibTex]

Arxiv [BibTex]


no image
A Random Riemannian Metric for Probabilistic Shortest-Path Tractography

Hauberg, S., Schober, M., Liptrot, M., Hennig, P., Feragen, A.

In 18th International Conference on Medical Image Computing and Computer Assisted Intervention, 9349, pages: 597-604, Lecture Notes in Computer Science, MICCAI, 2015 (inproceedings)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Recent Methodological Advances in Causal Discovery and Inference

Spirtes, P., Zhang, K.

In 15th Conference on Theoretical Aspects of Rationality and Knowledge, pages: 23-35, (Editors: Ramanujam, R.), TARK, 2015 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Learning Optimal Striking Points for A Ping-Pong Playing Robot

Huang, Y., Schölkopf, B., Peters, J.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4587-4592, IROS, 2015 (inproceedings)

am ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Model-Based Relative Entropy Stochastic Search

Abdolmaleki, A., Peters, J., Neumann, G.

In Advances in Neural Information Processing Systems 28, pages: 3523-3531, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Modeling Spatio-Temporal Variability in Human-Robot Interaction with Probabilistic Movement Primitives

Ewerton, M., Neumann, G., Lioutikov, R., Ben Amor, H., Peters, J., Maeda, G.

In Workshop on Machine Learning for Social Robotics, ICRA, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Extracting Low-Dimensional Control Variables for Movement Primitives

Rueckert, E., Mundo, J., Paraschos, A., Peters, J., Neumann, G.

In IEEE International Conference on Robotics and Automation, pages: 1511-1518, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Correlation matrix nearness and completion under observation uncertainty

Alaíz, C. M., Dinuzzo, F., Sra, S.

IMA Journal of Numerical Analysis, 35(1):325-340, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Quantitative evaluation of segmentation- and atlas- based attenuation correction for PET/MR on pediatric patients

Bezrukov, I., Schmidt, H., Gatidis, S., Mantlik, F., Schäfer, J. F., Schwenzer, N., Pichler, B. J.

Journal of Nuclear Medicine, 56(7):1067-1074, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Self-calibration of optical lenses

Hirsch, M., Schölkopf, B.

In IEEE International Conference on Computer Vision (ICCV 2015), pages: 612-620, IEEE, 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
The DES Science Verification Weak Lensing Shear Catalogs

Jarvis, M., Sheldon, E., Zuntz, J., Kacprzak, T., Bridle, S. L., Amara, A., Armstrong, R., Becker, M. R., Bernstein, G. M., Bonnett, C., others,

arXiv preprint arXiv:1507.05603, 2015 (techreport)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Sequential Image Deconvolution Using Probabilistic Linear Algebra

Gao, M.

Technical University of Munich, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Telling cause from effect in deterministic linear dynamical systems

Shajarisales, N., Janzing, D., Schölkopf, B., Besserve, M.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 285–294, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M. R., Fomina, T., Jayaram, V., Widmann, N., Förster, C., Müller vom Hagen, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, pages: 3187-3191, SMC, 2015 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Probabilistic numerics and uncertainty in computations

Hennig, P., Osborne, M. A., Girolami, M.

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471(2179), 2015 (article)

Abstract
We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Efficient Learning of Linear Separators under Bounded Noise

Awasthi, P., Balcan, M., Haghtalab, N., Urner, R.

In Proceedings of the 28th Conference on Learning Theory, 40, pages: 167-190, (Editors: Grünwald, P. and Hazan, E. and Kale, S.), JMLR, COLT, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning multiple collaborative tasks with a mixture of Interaction Primitives

Ewerton, M., Neumann, G., Lioutikov, R., Ben Amor, H., Peters, J., Maeda, G.

In IEEE International Conference on Robotics and Automation, pages: 1535-1542, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Disparity estimation from a generative light field model

Köhler, R., Schölkopf, B., Hirsch, M.

IEEE International Conference on Computer Vision (ICCV 2015), Workshop on Inverse Rendering, 2015, Note: This work has been presented as a poster and is not included in the workshop proceedings. (poster)

ei

[BibTex]

[BibTex]


no image
Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

Melchior, P., Suchyta, E., Huff, E., Hirsch, M., Kacprzak, T., Rykoff, E., Gruen, D., Armstrong, R., Bacon, D., Bechtol, K., others,

Monthly Notices of the Royal Astronomical Society, 449(3):2219-2238, Oxford University Press, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Causal Inference in Neuroimaging

Casarsa de Azevedo, L.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
The effect of frowning on attention

Ibarra Chaoul, A.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Justifying Information-Geometric Causal Inference

Janzing, D., Steudel, B., Shajarisales, N., Schölkopf, B.

In Measures of Complexity: Festschrift for Alexey Chervonenkis, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
Subspace Alignement based Domain Adaptation for RCNN detector

Raj, A., V., N., Tuytelaars, T.

Proceedings of the 26th British Machine Vision Conference (BMVC 2015), pages: 166.1-166.11, (Editors: Xianghua Xie and Mark W. Jones and Gary K. L. Tam), 2015 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Practical Probabilistic Programming with Monads

Ścibior, A., Ghahramani, Z., Gordon, A. D.

Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell, pages: 165-176, Haskell ’15, ACM, 2015 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
The search for single exoplanet transits in the Kepler light curves

Foreman-Mackey, D., Hogg, D. W., Schölkopf, B.

IAU General Assembly, 22, pages: 2258352, 2015 (talk)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Entropic Movement Complexity Reflects Subjective Creativity Rankings of Visualized Hand Motion Trajectories

Peng, Z, Braun, DA

Frontiers in Psychology, 6(1879):1-13, December 2015 (article)

Abstract
In a previous study we have shown that human motion trajectories can be characterized by translating continuous trajectories into symbol sequences with well-defined complexity measures. Here we test the hypothesis that the motion complexity individuals generate in their movements might be correlated to the degree of creativity assigned by a human observer to the visualized motion trajectories. We asked participants to generate 55 novel hand movement patterns in virtual reality, where each pattern had to be repeated 10 times in a row to ensure reproducibility. This allowed us to estimate a probability distribution over trajectories for each pattern. We assessed motion complexity not only by the previously proposed complexity measures on symbolic sequences, but we also propose two novel complexity measures that can be directly applied to the distributions over trajectories based on the frameworks of Gaussian Processes and Probabilistic Movement Primitives. In contrast to previous studies, these new methods allow computing complexities of individual motion patterns from very few sample trajectories. We compared the different complexity measures to how a group of independent jurors rank ordered the recorded motion trajectories according to their personal creativity judgment. We found three entropic complexity measures that correlate significantly with human creativity judgment and discuss differences between the measures. We also test whether these complexity measures correlate with individual creativity in divergent thinking tasks, but do not find any consistent correlation. Our results suggest that entropic complexity measures of hand motion may reveal domain-specific individual differences in kinesthetic creativity.

ei

DOI [BibTex]

DOI [BibTex]


no image
Bounded rationality, abstraction and hierarchical decision-making: an information-theoretic optimality principle

Genewein, T, Leibfried, F, Grau-Moya, J, Braun, DA

Frontiers in Robotics and AI, 2(27):1-24, October 2015 (article)

Abstract
Abstraction and hierarchical information-processing are hallmarks of human and animal intelligence underlying the unrivaled flexibility of behavior in biological systems. Achieving such a flexibility in artificial systems is challenging, even with more and more computational power. Here we investigate the hypothesis that abstraction and hierarchical information-processing might in fact be the consequence of limitations in information-processing power. In particular, we study an information-theoretic framework of bounded rational decision-making that trades off utility maximization against information-processing costs. We apply the basic principle of this framework to perception-action systems with multiple information-processing nodes and derive bounded optimal solutions. We show how the formation of abstractions and decision-making hierarchies depends on information-processing costs. We illustrate the theoretical ideas with example simulations and conclude by formalizing a mathematically unifying optimization principle that could potentially be extended to more complex systems.

ei

DOI [BibTex]

DOI [BibTex]


no image
Developing neural networks with neurons competing for survival

Peng, Z, Braun, DA

pages: 152-153, IEEE, Piscataway, NJ, USA, 5th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (IEEE ICDL-EPIROB), August 2015 (conference)

Abstract
We study developmental growth in a feedforward neural network model inspired by the survival principle in nature. Each neuron has to select its incoming connections in a way that allow it to fire, as neurons that are not able to fire over a period of time degenerate and die. In order to survive, neurons have to find reoccurring patterns in the activity of the neurons in the preceding layer, because each neuron requires more than one active input at any one time to have enough activation for firing. The sensory input at the lowest layer therefore provides the maximum amount of activation that all neurons compete for. The whole network grows dynamically over time depending on how many patterns can be found and how many neurons can maintain themselves accordingly. We show in simulations that this naturally leads to abstractions in higher layers that emerge in a unsupervised fashion. When evaluating the network in a supervised learning paradigm, it is clear that our network is not competitive. What is interesting though is that this performance was achieved by neurons that simply struggle for survival and do not know about performance error. In contrast to most studies on neural evolution that rely on a network-wide fitness function, our goal was to show that learning behaviour can appear in a system without being driven by any specific utility function or reward signal.

ei

DOI [BibTex]

DOI [BibTex]


no image
Signaling equilibria in sensorimotor interactions

Leibfried, F, Grau-Moya, J, Braun, DA

Cognition, 141, pages: 73-86, August 2015 (article)

Abstract
Although complex forms of communication like human language are often assumed to have evolved out of more simple forms of sensorimotor signaling, less attention has been devoted to investigate the latter. Here, we study communicative sensorimotor behavior of humans in a two-person joint motor task where each player controls one dimension of a planar motion. We designed this joint task as a game where one player (the sender) possesses private information about a hidden target the other player (the receiver) wants to know about, and where the sender's actions are costly signals that influence the receiver's control strategy. We developed a game-theoretic model within the framework of signaling games to investigate whether subjects' behavior could be adequately described by the corresponding equilibrium solutions. The model predicts both separating and pooling equilibria, in which signaling does and does not occur respectively. We observed both kinds of equilibria in subjects and found that, in line with model predictions, the propensity of signaling decreased with increasing signaling costs and decreasing uncertainty on the part of the receiver. Our study demonstrates that signaling games, which have previously been applied to economic decision-making and animal communication, provide a framework for human signaling behavior arising during sensorimotor interactions in continuous and dynamic environments.

ei

DOI [BibTex]

DOI [BibTex]


no image
Structure Learning in Bayesian Sensorimotor Integration

Genewein, T, Hez, E, Razzaghpanah, Z, Braun, DA

PLoS Computational Biology, 11(8):1-27, August 2015 (article)

Abstract
Previous studies have shown that sensorimotor processing can often be described by Bayesian learning, in particular the integration of prior and feedback information depending on its degree of reliability. Here we test the hypothesis that the integration process itself can be tuned to the statistical structure of the environment. We exposed human participants to a reaching task in a three-dimensional virtual reality environment where we could displace the visual feedback of their hand position in a two dimensional plane. When introducing statistical structure between the two dimensions of the displacement, we found that over the course of several days participants adapted their feedback integration process in order to exploit this structure for performance improvement. In control experiments we found that this adaptation process critically depended on performance feedback and could not be induced by verbal instructions. Our results suggest that structural learning is an important meta-learning component of Bayesian sensorimotor integration.

ei

DOI [BibTex]

DOI [BibTex]


no image
A Reward-Maximizing Spiking Neuron as a Bounded Rational Decision Maker

Leibfried, F, Braun, DA

Neural Computation, 27(8):1686-1720, July 2015 (article)

Abstract
Rate distortion theory describes how to communicate relevant information most efficiently over a channel with limited capacity. One of the many applications of rate distortion theory is bounded rational decision making, where decision makers are modeled as information channels that transform sensory input into motor output under the constraint that their channel capacity is limited. Such a bounded rational decision maker can be thought to optimize an objective function that trades off the decision maker's utility or cumulative reward against the information processing cost measured by the mutual information between sensory input and motor output. In this study, we interpret a spiking neuron as a bounded rational decision maker that aims to maximize its expected reward under the computational constraint that the mutual information between the neuron's input and output is upper bounded. This abstract computational constraint translates into a penalization of the deviation between the neuron's instantaneous and average firing behavior. We derive a synaptic weight update rule for such a rate distortion optimizing neuron and show in simulations that the neuron efficiently extracts reward-relevant information from the input by trading off its synaptic strengths against the collected reward.

ei

DOI [BibTex]

DOI [BibTex]


no image
What is epistemic value in free energy models of learning and acting? A bounded rationality perspective

Ortega, PA, Braun, DA

Cognitive Neuroscience, 6(4):215-216, December 2015 (article)

Abstract
Free energy models of learning and acting do not only care about utility or extrinsic value, but also about intrinsic value, that is, the information value stemming from probability distributions that represent beliefs or strategies. While these intrinsic values can be interpreted as epistemic values or exploration bonuses under certain conditions, the framework of bounded rationality offers a complementary interpretation in terms of information-processing costs that we discuss here.

ei

DOI [BibTex]

DOI [BibTex]

2013


no image
Camera-specific Image Denoising

Schober, M.

Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)

ei pn

PDF [BibTex]

2013


PDF [BibTex]


no image
Studying large-scale brain networks: electrical stimulation and neural-event-triggered fMRI

Logothetis, N., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H., Besserve, M., Oeltermann, A.

Twenty-Second Annual Computational Neuroscience Meeting (CNS*2013), July 2013, journal = {BMC Neuroscience}, year = {2013}, month = {7}, volume = {14}, number = {Supplement 1}, pages = {A1}, (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Correlation of Simultaneously Acquired Diffusion-Weighted Imaging and 2-Deoxy-[18F] fluoro-2-D-glucose Positron Emission Tomography of Pulmonary Lesions in a Dedicated Whole-Body Magnetic Resonance/Positron Emission Tomography System

Schmidt, H., Brendle, C., Schraml, C., Martirosian, P., Bezrukov, I., Hetzel, J., Müller, M., Sauter, A., Claussen, C., Pfannenberg, C., Schwenzer, N.

Investigative Radiology, 48(5):247-255, May 2013 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Replacing Causal Faithfulness with Algorithmic Independence of Conditionals

Lemeire, J., Janzing, D.

Minds and Machines, 23(2):227-249, May 2013 (article)

Abstract
Independence of Conditionals (IC) has recently been proposed as a basic rule for causal structure learning. If a Bayesian network represents the causal structure, its Conditional Probability Distributions (CPDs) should be algorithmically independent. In this paper we compare IC with causal faithfulness (FF), stating that only those conditional independences that are implied by the causal Markov condition hold true. The latter is a basic postulate in common approaches to causal structure learning. The common spirit of FF and IC is to reject causal graphs for which the joint distribution looks ‘non-generic’. The difference lies in the notion of genericity: FF sometimes rejects models just because one of the CPDs is simple, for instance if the CPD describes a deterministic relation. IC does not behave in this undesirable way. It only rejects a model when there is a non-generic relation between different CPDs although each CPD looks generic when considered separately. Moreover, it detects relations between CPDs that cannot be captured by conditional independences. IC therefore helps in distinguishing causal graphs that induce the same conditional independences (i.e., they belong to the same Markov equivalence class). The usual justification for FF implicitly assumes a prior that is a probability density on the parameter space. IC can be justified by Solomonoff’s universal prior, assigning non-zero probability to those points in parameter space that have a finite description. In this way, it favours simple CPDs, and therefore respects Occam’s razor. Since Kolmogorov complexity is uncomputable, IC is not directly applicable in practice. We argue that it is nevertheless helpful, since it has already served as inspiration and justification for novel causal inference algorithms.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
What can neurons do for their brain? Communicate selectivity with bursts

Balduzzi, D., Tononi, G.

Theory in Biosciences , 132(1):27-39, Springer, March 2013 (article)

Abstract
Neurons deep in cortex interact with the environment extremely indirectly; the spikes they receive and produce are pre- and post-processed by millions of other neurons. This paper proposes two information-theoretic constraints guiding the production of spikes, that help ensure bursting activity deep in cortex relates meaningfully to events in the environment. First, neurons should emphasize selective responses with bursts. Second, neurons should propagate selective inputs by burst-firing in response to them. We show the constraints are necessary for bursts to dominate information-transfer within cortex, thereby providing a substrate allowing neurons to distribute credit amongst themselves. Finally, since synaptic plasticity degrades the ability of neurons to burst selectively, we argue that homeostatic regulation of synaptic weights is necessary, and that it is best performed offline during sleep.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Apprenticeship Learning with Few Examples

Boularias, A., Chaib-draa, B.

Neurocomputing, 104, pages: 83-96, March 2013 (article)

Abstract
We consider the problem of imitation learning when the examples, provided by an expert human, are scarce. Apprenticeship learning via inverse reinforcement learning provides an efficient tool for generalizing the examples, based on the assumption that the expert's policy maximizes a value function, which is a linear combination of state and action features. Most apprenticeship learning algorithms use only simple empirical averages of the features in the demonstrations as a statistics of the expert's policy. However, this method is efficient only when the number of examples is sufficiently large to cover most of the states, or the dynamics of the system is nearly deterministic. In this paper, we show that the quality of the learned policies is sensitive to the error in estimating the averages of the features when the dynamics of the system is stochastic. To reduce this error, we introduce two new approaches for bootstrapping the demonstrations by assuming that the expert is near-optimal and the dynamics of the system is known. In the first approach, the expert's examples are used to learn a reward function and to generate furthermore examples from the corresponding optimal policy. The second approach uses a transfer technique, known as graph homomorphism, in order to generalize the expert's actions to unvisited regions of the state space. Empirical results on simulated robot navigation problems show that our approach is able to learn sufficiently good policies from a significantly small number of examples.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl thumb hennigk2012 2
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

Journal of Machine Learning Research, 14(1):843-865, March 2013 (article)

Abstract
Four decades after their invention, quasi-Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

ei ps pn

website+code pdf link (url) [BibTex]

website+code pdf link (url) [BibTex]


no image
Regional effects of magnetization dispersion on quantitative perfusion imaging for pulsed and continuous arterial spin labeling

Cavusoglu, M., Pohmann, R., Burger, H. C., Uludag, K.

Magnetic Resonance in Medicine, 69(2):524-530, Febuary 2013 (article)

Abstract
Most experiments assume a global transit delay time with blood flowing from the tagging region to the imaging slice in plug flow without any dispersion of the magnetization. However, because of cardiac pulsation, nonuniform cross-sectional flow profile, and complex vessel networks, the transit delay time is not a single value but follows a distribution. In this study, we explored the regional effects of magnetization dispersion on quantitative perfusion imaging for varying transit times within a very large interval from the direct comparison of pulsed, pseudo-continuous, and dual-coil continuous arterial spin labeling encoding schemes. Longer distances between tagging and imaging region typically used for continuous tagging schemes enhance the regional bias on the quantitative cerebral blood flow measurement causing an underestimation up to 37% when plug flow is assumed as in the standard model.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
The multivariate Watson distribution: Maximum-likelihood estimation and other aspects

Sra, S., Karp, D.

Journal of Multivariate Analysis, 114, pages: 256-269, February 2013 (article)

Abstract
This paper studies fundamental aspects of modelling data using multivariate Watson distributions. Although these distributions are natural for modelling axially symmetric data (i.e., unit vectors where View the MathML source are equivalent), for high-dimensions using them can be difficult—largely because for Watson distributions even basic tasks such as maximum-likelihood are numerically challenging. To tackle the numerical difficulties some approximations have been derived. But these are either grossly inaccurate in high-dimensions [K.V. Mardia, P. Jupp, Directional Statistics, second ed., John Wiley & Sons, 2000] or when reasonably accurate [A. Bijral, M. Breitenbach, G.Z. Grudic, Mixture of Watson distributions: a generative model for hyperspherical embeddings, in: Artificial Intelligence and Statistics, AISTATS 2007, 2007, pp. 35–42], they lack theoretical justification. We derive new approximations to the maximum-likelihood estimates; our approximations are theoretically well-defined, numerically accurate, and easy to compute. We build on our parameter estimation and discuss mixture-modelling with Watson distributions; here we uncover a hitherto unknown connection to the “diametrical clustering” algorithm of Dhillon et al. [I.S. Dhillon, E.M. Marcotte, U. Roshan, Diametrical clustering for identifying anticorrelated gene clusters, Bioinformatics 19 (13) (2003) 1612–1619].

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
How the result of graph clustering methods depends on the construction of the graph

Maier, M., von Luxburg, U., Hein, M.

ESAIM: Probability & Statistics, 17, pages: 370-418, January 2013 (article)

Abstract
We study the scenario of graph-based clustering algorithms such as spectral clustering. Given a set of data points, one rst has to construct a graph on the data points and then apply a graph clustering algorithm to nd a suitable partition of the graph. Our main question is if and how the construction of the graph (choice of the graph, choice of parameters, choice of weights) in uences the outcome of the nal clustering result. To this end we study the convergence of cluster quality measures such as the normalized cut or the Cheeger cut on various kinds of random geometric graphs as the sample size tends to in nity. It turns out that the limit values of the same objective function are systematically di erent on di erent types of graphs. This implies that clustering results systematically depend on the graph and can be very di erent for di erent types of graph. We provide examples to illustrate the implications on spectral clustering.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Falsification and future performance

Balduzzi, D.

In Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence, 7070, pages: 65-78, Lecture Notes in Computer Science, Springer, Berlin, Germany, Solomonoff 85th Memorial Conference, January 2013 (inproceedings)

Abstract
We information-theoretically reformulate two measures of capacity from statistical learning theory: empirical VC-entropy and empirical Rademacher complexity. We show these capacity measures count the number of hypotheses about a dataset that a learning algorithm falsifies when it finds the classifier in its repertoire minimizing empirical risk. It then follows from that the future performance of predictors on unseen data is controlled in part by how many hypotheses the learner falsifies. As a corollary we show that empirical VC-entropy quantifies the message length of the true hypothesis in the optimal code of a particular probability distribution, the so-called actual repertoire.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]