Header logo is


2015


no image
Assessment of tumor heterogeneity using unsupervised graph based clustering of multi-modality imaging data

Katiyar, P., Divine, M. R., Pichler, B. J., Disselhorst, J. A.

European Molecular Imaging Meeting, 2015 (poster)

ei

[BibTex]

2015


[BibTex]


no image
Assessment of murine brain tissue shrinkage caused by different histological fixatives using magnetic resonance and computed tomography imaging

Wehrl, H. F., Bezrukov, I., Wiehr, S., Lehnhoff, M., Fuchs, K., Mannheim, J. G., Quintanilla-Martinez, L., Kneilling, M., Pichler, B. J., Sauter, A. W.

Histology and Histopathology, 30(5):601-613, 2015 (article)

ei

[BibTex]

[BibTex]


no image
Cosmology from Cosmic Shear with DES Science Verification Data

Abbott, T., Abdalla, F. B., Allam, S., Amara, A., Annis, J., Armstrong, R., Bacon, D., Banerji, M., Bauer, A. H., Baxter, E., others,

arXiv preprint arXiv:1507.05552, 2015 (techreport)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
BACKSHIFT: Learning causal cyclic graphs from unknown shift interventions

Rothenhäusler, D., Heinze, C., Peters, J., Meinshausen, N.

Advances in Neural Information Processing Systems 28, pages: 1513-1521, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Particle Gibbs for Infinite Hidden Markov Models

Tripuraneni*, N., Gu*, S., Ge, H., Ghahramani, Z.

Advances in Neural Information Processing Systems 28, pages: 2395-2403, (Editors: Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett), 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015, *equal contribution (conference)

ei

PDF [BibTex]

PDF [BibTex]


no image
Improved Bayesian Information Criterion for Mixture Model Selection

Mehrjou, A., Hosseini, R., Araabi, B.

Pattern Recognition Letters, 69, pages: 22-27, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl 2016 peer grading
Peer grading in a course on algorithms and data structures

Sajjadi, M. S. M., Alamgir, M., von Luxburg, U.

Workshop on Crowdsourcing and Machine Learning (CrowdML) Workshop on Machine Learning for Education (ML4Ed) at at the 32th International Conference on Machine Learning (ICML), 2015 (conference)

ei

Arxiv [BibTex]

Arxiv [BibTex]


no image
A Random Riemannian Metric for Probabilistic Shortest-Path Tractography

Hauberg, S., Schober, M., Liptrot, M., Hennig, P., Feragen, A.

In 18th International Conference on Medical Image Computing and Computer Assisted Intervention, 9349, pages: 597-604, Lecture Notes in Computer Science, MICCAI, 2015 (inproceedings)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Recent Methodological Advances in Causal Discovery and Inference

Spirtes, P., Zhang, K.

In 15th Conference on Theoretical Aspects of Rationality and Knowledge, pages: 23-35, (Editors: Ramanujam, R.), TARK, 2015 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Learning Optimal Striking Points for A Ping-Pong Playing Robot

Huang, Y., Schölkopf, B., Peters, J.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4587-4592, IROS, 2015 (inproceedings)

am ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Model-Based Relative Entropy Stochastic Search

Abdolmaleki, A., Peters, J., Neumann, G.

In Advances in Neural Information Processing Systems 28, pages: 3523-3531, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Modeling Spatio-Temporal Variability in Human-Robot Interaction with Probabilistic Movement Primitives

Ewerton, M., Neumann, G., Lioutikov, R., Ben Amor, H., Peters, J., Maeda, G.

In Workshop on Machine Learning for Social Robotics, ICRA, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Extracting Low-Dimensional Control Variables for Movement Primitives

Rueckert, E., Mundo, J., Paraschos, A., Peters, J., Neumann, G.

In IEEE International Conference on Robotics and Automation, pages: 1511-1518, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Correlation matrix nearness and completion under observation uncertainty

Alaíz, C. M., Dinuzzo, F., Sra, S.

IMA Journal of Numerical Analysis, 35(1):325-340, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Quantitative evaluation of segmentation- and atlas- based attenuation correction for PET/MR on pediatric patients

Bezrukov, I., Schmidt, H., Gatidis, S., Mantlik, F., Schäfer, J. F., Schwenzer, N., Pichler, B. J.

Journal of Nuclear Medicine, 56(7):1067-1074, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Self-calibration of optical lenses

Hirsch, M., Schölkopf, B.

In IEEE International Conference on Computer Vision (ICCV 2015), pages: 612-620, IEEE, 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
The DES Science Verification Weak Lensing Shear Catalogs

Jarvis, M., Sheldon, E., Zuntz, J., Kacprzak, T., Bridle, S. L., Amara, A., Armstrong, R., Becker, M. R., Bernstein, G. M., Bonnett, C., others,

arXiv preprint arXiv:1507.05603, 2015 (techreport)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Sequential Image Deconvolution Using Probabilistic Linear Algebra

Gao, M.

Technical University of Munich, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Telling cause from effect in deterministic linear dynamical systems

Shajarisales, N., Janzing, D., Schölkopf, B., Besserve, M.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 285–294, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M. R., Fomina, T., Jayaram, V., Widmann, N., Förster, C., Müller vom Hagen, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, pages: 3187-3191, SMC, 2015 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Probabilistic numerics and uncertainty in computations

Hennig, P., Osborne, M. A., Girolami, M.

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471(2179), 2015 (article)

Abstract
We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Efficient Learning of Linear Separators under Bounded Noise

Awasthi, P., Balcan, M., Haghtalab, N., Urner, R.

In Proceedings of the 28th Conference on Learning Theory, 40, pages: 167-190, (Editors: Grünwald, P. and Hazan, E. and Kale, S.), JMLR, COLT, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning multiple collaborative tasks with a mixture of Interaction Primitives

Ewerton, M., Neumann, G., Lioutikov, R., Ben Amor, H., Peters, J., Maeda, G.

In IEEE International Conference on Robotics and Automation, pages: 1535-1542, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Disparity estimation from a generative light field model

Köhler, R., Schölkopf, B., Hirsch, M.

IEEE International Conference on Computer Vision (ICCV 2015), Workshop on Inverse Rendering, 2015, Note: This work has been presented as a poster and is not included in the workshop proceedings. (poster)

ei

[BibTex]

[BibTex]


no image
Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

Melchior, P., Suchyta, E., Huff, E., Hirsch, M., Kacprzak, T., Rykoff, E., Gruen, D., Armstrong, R., Bacon, D., Bechtol, K., others,

Monthly Notices of the Royal Astronomical Society, 449(3):2219-2238, Oxford University Press, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Causal Inference in Neuroimaging

Casarsa de Azevedo, L.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
The effect of frowning on attention

Ibarra Chaoul, A.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Justifying Information-Geometric Causal Inference

Janzing, D., Steudel, B., Shajarisales, N., Schölkopf, B.

In Measures of Complexity: Festschrift for Alexey Chervonenkis, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
Subspace Alignement based Domain Adaptation for RCNN detector

Raj, A., V., N., Tuytelaars, T.

Proceedings of the 26th British Machine Vision Conference (BMVC 2015), pages: 166.1-166.11, (Editors: Xianghua Xie and Mark W. Jones and Gary K. L. Tam), 2015 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Practical Probabilistic Programming with Monads

Ścibior, A., Ghahramani, Z., Gordon, A. D.

Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell, pages: 165-176, Haskell ’15, ACM, 2015 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
The search for single exoplanet transits in the Kepler light curves

Foreman-Mackey, D., Hogg, D. W., Schölkopf, B.

IAU General Assembly, 22, pages: 2258352, 2015 (talk)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Entropic Movement Complexity Reflects Subjective Creativity Rankings of Visualized Hand Motion Trajectories

Peng, Z, Braun, DA

Frontiers in Psychology, 6(1879):1-13, December 2015 (article)

Abstract
In a previous study we have shown that human motion trajectories can be characterized by translating continuous trajectories into symbol sequences with well-defined complexity measures. Here we test the hypothesis that the motion complexity individuals generate in their movements might be correlated to the degree of creativity assigned by a human observer to the visualized motion trajectories. We asked participants to generate 55 novel hand movement patterns in virtual reality, where each pattern had to be repeated 10 times in a row to ensure reproducibility. This allowed us to estimate a probability distribution over trajectories for each pattern. We assessed motion complexity not only by the previously proposed complexity measures on symbolic sequences, but we also propose two novel complexity measures that can be directly applied to the distributions over trajectories based on the frameworks of Gaussian Processes and Probabilistic Movement Primitives. In contrast to previous studies, these new methods allow computing complexities of individual motion patterns from very few sample trajectories. We compared the different complexity measures to how a group of independent jurors rank ordered the recorded motion trajectories according to their personal creativity judgment. We found three entropic complexity measures that correlate significantly with human creativity judgment and discuss differences between the measures. We also test whether these complexity measures correlate with individual creativity in divergent thinking tasks, but do not find any consistent correlation. Our results suggest that entropic complexity measures of hand motion may reveal domain-specific individual differences in kinesthetic creativity.

ei

DOI [BibTex]

DOI [BibTex]


no image
Bounded rationality, abstraction and hierarchical decision-making: an information-theoretic optimality principle

Genewein, T, Leibfried, F, Grau-Moya, J, Braun, DA

Frontiers in Robotics and AI, 2(27):1-24, October 2015 (article)

Abstract
Abstraction and hierarchical information-processing are hallmarks of human and animal intelligence underlying the unrivaled flexibility of behavior in biological systems. Achieving such a flexibility in artificial systems is challenging, even with more and more computational power. Here we investigate the hypothesis that abstraction and hierarchical information-processing might in fact be the consequence of limitations in information-processing power. In particular, we study an information-theoretic framework of bounded rational decision-making that trades off utility maximization against information-processing costs. We apply the basic principle of this framework to perception-action systems with multiple information-processing nodes and derive bounded optimal solutions. We show how the formation of abstractions and decision-making hierarchies depends on information-processing costs. We illustrate the theoretical ideas with example simulations and conclude by formalizing a mathematically unifying optimization principle that could potentially be extended to more complex systems.

ei

DOI [BibTex]

DOI [BibTex]


no image
Developing neural networks with neurons competing for survival

Peng, Z, Braun, DA

pages: 152-153, IEEE, Piscataway, NJ, USA, 5th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (IEEE ICDL-EPIROB), August 2015 (conference)

Abstract
We study developmental growth in a feedforward neural network model inspired by the survival principle in nature. Each neuron has to select its incoming connections in a way that allow it to fire, as neurons that are not able to fire over a period of time degenerate and die. In order to survive, neurons have to find reoccurring patterns in the activity of the neurons in the preceding layer, because each neuron requires more than one active input at any one time to have enough activation for firing. The sensory input at the lowest layer therefore provides the maximum amount of activation that all neurons compete for. The whole network grows dynamically over time depending on how many patterns can be found and how many neurons can maintain themselves accordingly. We show in simulations that this naturally leads to abstractions in higher layers that emerge in a unsupervised fashion. When evaluating the network in a supervised learning paradigm, it is clear that our network is not competitive. What is interesting though is that this performance was achieved by neurons that simply struggle for survival and do not know about performance error. In contrast to most studies on neural evolution that rely on a network-wide fitness function, our goal was to show that learning behaviour can appear in a system without being driven by any specific utility function or reward signal.

ei

DOI [BibTex]

DOI [BibTex]


no image
Signaling equilibria in sensorimotor interactions

Leibfried, F, Grau-Moya, J, Braun, DA

Cognition, 141, pages: 73-86, August 2015 (article)

Abstract
Although complex forms of communication like human language are often assumed to have evolved out of more simple forms of sensorimotor signaling, less attention has been devoted to investigate the latter. Here, we study communicative sensorimotor behavior of humans in a two-person joint motor task where each player controls one dimension of a planar motion. We designed this joint task as a game where one player (the sender) possesses private information about a hidden target the other player (the receiver) wants to know about, and where the sender's actions are costly signals that influence the receiver's control strategy. We developed a game-theoretic model within the framework of signaling games to investigate whether subjects' behavior could be adequately described by the corresponding equilibrium solutions. The model predicts both separating and pooling equilibria, in which signaling does and does not occur respectively. We observed both kinds of equilibria in subjects and found that, in line with model predictions, the propensity of signaling decreased with increasing signaling costs and decreasing uncertainty on the part of the receiver. Our study demonstrates that signaling games, which have previously been applied to economic decision-making and animal communication, provide a framework for human signaling behavior arising during sensorimotor interactions in continuous and dynamic environments.

ei

DOI [BibTex]

DOI [BibTex]


no image
Structure Learning in Bayesian Sensorimotor Integration

Genewein, T, Hez, E, Razzaghpanah, Z, Braun, DA

PLoS Computational Biology, 11(8):1-27, August 2015 (article)

Abstract
Previous studies have shown that sensorimotor processing can often be described by Bayesian learning, in particular the integration of prior and feedback information depending on its degree of reliability. Here we test the hypothesis that the integration process itself can be tuned to the statistical structure of the environment. We exposed human participants to a reaching task in a three-dimensional virtual reality environment where we could displace the visual feedback of their hand position in a two dimensional plane. When introducing statistical structure between the two dimensions of the displacement, we found that over the course of several days participants adapted their feedback integration process in order to exploit this structure for performance improvement. In control experiments we found that this adaptation process critically depended on performance feedback and could not be induced by verbal instructions. Our results suggest that structural learning is an important meta-learning component of Bayesian sensorimotor integration.

ei

DOI [BibTex]

DOI [BibTex]


no image
A Reward-Maximizing Spiking Neuron as a Bounded Rational Decision Maker

Leibfried, F, Braun, DA

Neural Computation, 27(8):1686-1720, July 2015 (article)

Abstract
Rate distortion theory describes how to communicate relevant information most efficiently over a channel with limited capacity. One of the many applications of rate distortion theory is bounded rational decision making, where decision makers are modeled as information channels that transform sensory input into motor output under the constraint that their channel capacity is limited. Such a bounded rational decision maker can be thought to optimize an objective function that trades off the decision maker's utility or cumulative reward against the information processing cost measured by the mutual information between sensory input and motor output. In this study, we interpret a spiking neuron as a bounded rational decision maker that aims to maximize its expected reward under the computational constraint that the mutual information between the neuron's input and output is upper bounded. This abstract computational constraint translates into a penalization of the deviation between the neuron's instantaneous and average firing behavior. We derive a synaptic weight update rule for such a rate distortion optimizing neuron and show in simulations that the neuron efficiently extracts reward-relevant information from the input by trading off its synaptic strengths against the collected reward.

ei

DOI [BibTex]

DOI [BibTex]


no image
What is epistemic value in free energy models of learning and acting? A bounded rationality perspective

Ortega, PA, Braun, DA

Cognitive Neuroscience, 6(4):215-216, December 2015 (article)

Abstract
Free energy models of learning and acting do not only care about utility or extrinsic value, but also about intrinsic value, that is, the information value stemming from probability distributions that represent beliefs or strategies. While these intrinsic values can be interpreted as epistemic values or exploration bonuses under certain conditions, the framework of bounded rationality offers a complementary interpretation in terms of information-processing costs that we discuss here.

ei

DOI [BibTex]

DOI [BibTex]

2007


no image
HPLC analysis and pharmacokinetic study of quercitrin and isoquercitrin in rat plasma after administration of Hypericum japonicum thunb. extract.

Li, J., Wang, W., Zhang, L., Chen, H., Bi, S.

Biomedical Chromatography, 22(4):374-378, December 2007 (article)

Abstract
A simple HPLC method was developed for determination of quercitrin and isoquercitrin in rat plasma. Reversed-phase HPLC was employed for the quantitative analysis using kaempferol-3-O--d-glucopyranoside-7-O--l-rhamnoside as an internal standard. Following extraction from the plasma samples with ethyl acetate-isopropanol (95:5, v/v), these two compounds were successfully separated on a Luna C18 column (250 × 4.6 mm, 5 µm) with isocratic elution of acetonitrile-0.5% aqueous acetic acid (17:83, v/v) as the mobile phase. The flow-rate was set at 1 mL/min and the eluent was detected at 350 nm for both quercitrin and isoquercitrin. The method was linear over the studied ranges of 50-6000 and 50-5000 ng/mL for quercitrin and isoquercitrin, respectively. The intra- and inter-day precisions of the analysis were better than 13.1 and 13.2%, respectively. The lower limits of quantitation for quercitrin and isoquercitrin in plasma were both of 50 ng/mL. The mean extraction recoveries were 73 and 61% for quercitrin and i soquercitrin, respectively. The validated method was successfully applied to pharmacokinetic studies of the two analytes in rat plasma after the oral administration of Hypericum japonicum thunb. ethanol extract.

ei

Web DOI [BibTex]

2007



no image
Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism

Saigo, H., Hattori, M., Tsuda, K.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Secondary metabolic pathway in plant is important for finding druggable candidate enzymes. However, there are many enzymes whose functions are still undiscovered especially in organism-specific metabolic pathways. We propose reaction graph kernels for automatically assigning the EC numbers to unknown enzymatic reactions in a metabolic network. Experiments are carried out on KEGG/REACTION database and our method successfully predicted the first three digits of the EC number with 83% accuracy.We also exhaustively predicted missing enzymatic functions in the plant secondary metabolism pathways, and evaluated our results in biochemical validity.

ei

Web [BibTex]

Web [BibTex]


no image
Positional Oligomer Importance Matrices

Sonnenburg, S., Zien, A., Philips, P., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
At the heart of many important bioinformatics problems, such as gene finding and function prediction, is the classification of biological sequences, above all of DNA and proteins. In many cases, the most accurate classifiers are obtained by training SVMs with complex sequence kernels, for instance for transcription starts or splice sites. However, an often criticized downside of SVMs with complex kernels is that it is very hard for humans to understand the learned decision rules and to derive biological insights from them. To close this gap, we introduce the concept of positional oligomer importance matrices (POIMs) and develop an efficient algorithm for their computation. We demonstrate how they overcome the limitations of sequence logos, and how they can be used to find relevant motifs for different biological phenomena in a straight-forward way. Note that the concept of POIMs is not limited to interpreting SVMs, but is applicable to general k−mer based scoring systems.

ei

Web [BibTex]

Web [BibTex]


no image
Machine Learning Algorithms for Polymorphism Detection

Schweikert, G., Zeller, G., Weigel, D., Schölkopf, B., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Graph sharpening plus graph integration: a synergy that improves protein functional classification

Shin, HH., Lisewski, AM., Lichtarge, O.

Bioinformatics, 23(23):3217-3224, December 2007 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Tutorial on Spectral Clustering

von Luxburg, U.

Statistics and Computing, 17(4):395-416, December 2007 (article)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
An Automated Combination of Kernels for Predicting Protein Subcellular Localization

Zien, A., Ong, C.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions.We propose a new class of protein sequence kernels which considers all motifs including motifs with gaps. This class of kernels allows the inclusion of pairwise amino acid distances into their computation. We utilize an extension of the multiclass support vector machine (SVM)method which directly solves protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. To automatically search over families of possible amino acid motifs, we optimize over multiple kernels at the same time. We compare our automated approach to four other predictors on three different datasets, and show that we perform better than the current state of the art. Furthermore, our method provides some insights as to which features are most useful for determining subcellular localization, which are in agreement with biological reasoning.

ei

Web [BibTex]

Web [BibTex]


no image
A Tutorial on Kernel Methods for Categorization

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 51(6):343-358, December 2007 (article)

Abstract
The abilities to learn and to categorize are fundamental for cognitive systems, be it animals or machines, and therefore have attracted attention from engineers and psychologists alike. Modern machine learning methods and psychological models of categorization are remarkably similar, partly because these two fields share a common history in artificial neural networks and reinforcement learning. However, machine learning is now an independent and mature field that has moved beyond psychologically or neurally inspired algorithms towards providing foundations for a theory of learning that is rooted in statistics and functional analysis. Much of this research is potentially interesting for psychological theories of learning and categorization but also hardly accessible for psychologists. Here, we provide a tutorial introduction to a popular class of machine learning tools, called kernel methods. These methods are closely related to perceptrons, radial-basis-function neural networks and exemplar theories of catego rization. Recent theoretical advances in machine learning are closely tied to the idea that the similarity of patterns can be encapsulated in a positive definite kernel. Such a positive definite kernel can define a reproducing kernel Hilbert space which allows one to use powerful tools from functional analysis for the analysis of learning algorithms. We give basic explanations of some key concepts—the so-called kernel trick, the representer theorem and regularization—which may open up the possibility that insights from machine learning can feed back into psychology.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A semigroup approach to queueing systems

Haji, A., Radl, A.

Semigroup Forum, 75(3):610-624, December 2007 (article)

Abstract
We prove asymptotic stability of the solutions of equations describing a simple queueing system consisting of two machines separated by a finite storage buffer. Following an approach by G. Gupur, we apply the theory of C0-semigroups and spectral theory of positive operators.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Point-spread functions for backscattered imaging in the scanning electron microscope

Hennig, P., Denk, W.

Journal of Applied Physics , 102(12):1-8, December 2007 (article)

Abstract
One knows the imaging system's properties are central to the correct interpretation of any image. In a scanning electron microscope regions of different composition generally interact in a highly nonlinear way during signal generation. Using Monte Carlo simulations we found that in resin-embedded, heavy metal-stained biological specimens staining is sufficiently dilute to allow an approximately linear treatment. We then mapped point-spread functions for backscattered-electron contrast, for primary energies of 3 and 7 keV and for different detector specifications. The point-spread functions are surprisingly well confined (both laterally and in depth) compared even to the distribution of only those scattered electrons that leave the sample again.

ei pn

Web DOI [BibTex]

Web DOI [BibTex]


no image
Accurate Splice site Prediction Using Support Vector Machines

Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.

BMC Bioinformatics, 8(Supplement 10):1-16, December 2007 (article)

Abstract
Background: For splice site recognition, one has to solve two classification problems: discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems typically rely on Markov Chains to solve these tasks. Results: In this work we consider Support Vector Machines for splice site recognition. We employ the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in several experiments where we compare its prediction accuracy with that of recently proposed systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our performance estimates indicate that splice sites can be recognized very accurately in these genomes and that our method outperforms many other methods including Markov Chains, GeneSplicer and SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction tool ready to be used for incorporation in a gene finder. Availability: Data, splits, additional information on the model selection, the whole genome predictions, as well as the stand-alone prediction tool are available for download at http:// www.fml.mpg.de/raetsch/projects/splice.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]