ei
Graf, AAB.
Classification and Feature Extraction in Man and Machine
Biologische Kybernetik, University of Tübingen, Germany, 2004, online publication (phdthesis)
ei
Finger, F., Schorle, C., Söder, S., Zien, A., Goldring, M., Aigner, T.
Phenotypic Characterization of Human Chondrocyte Cell Line C-20/A4: A Comparison between Monolayer and Alginate Suspension Culture
Cells Tissues Organs, 178(2):65-77, 2004 (article)
ei
Perez-Cruz, F., Bousquet, O.
Kernel Methods and their Potential Use in Signal Processing
IEEE Signal Processing Magazine, (Special issue on Signal Processing for Mining), 2004 (article) Accepted
ei
Boucheron, S., Lugosi, G., Bousquet, O.
Concentration Inequalities
In Lecture Notes in Artificial Intelligence 3176, pages: 208-240, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)
ei
Kashima, H., Tsuda, K., Inokuchi, A.
Kernels for graphs
In pages: 155-170, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)
ei
Zien, A.
A primer on molecular biology
In pages: 3-34, (Editors: Schoelkopf, B., K. Tsuda and J. P. Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)
ei
Franz, M., Schölkopf, B.
Implicit Wiener series for capturing higher-order interactions in
images
Sensory coding and the natural environment, (Editors: Olshausen, B.A. and M. Lewicki), 2004 (poster)
ei
Graf, A., Wichmann, F., Bülthoff, H., Schölkopf, B.
Classification and Memory Behaviour of Man Revisited by Machine
CSHL Meeting on Computational & Systems Neuroscience (COSYNE), 2004 (poster)
ei
Bousquet, O.
Advanced Statistical Learning Theory
Machine Learning Summer School, 2004 (talk)
ei
Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D.
Advances in Large Margin Classifiers
pages: 422, Neural Information Processing, MIT Press, Cambridge, MA, USA, October 2000 (book)
ei
Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.
An Introduction to Kernel-Based Learning Algorithms
In Handbook of Neural Network Signal Processing, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)
ei
Chalimourda, A., Schölkopf, B., Smola, A.
Choosing nu in support vector regression with
different noise models — theory and experiments
In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, Neural Computing: New Challenges and Perspectives for the New Millennium, IEEE, International Joint Conference on Neural Networks, 2000 (inproceedings)