ei
Gomez Rodriguez, M., Song, L., Daneshmand, H., Schölkopf, B.
Estimating Diffusion Networks: Recovery Conditions, Sample Complexity and Soft-thresholding Algorithm
Journal of Machine Learning Research, 17(90):1-29, 2016 (article)
ei
Schütt, H. H., Harmeling, S., Macke, J. H., Wichmann, F. A.
Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data
Vision Research, 122, pages: 105-123, 2016 (article)
ei
Grosse-Wentrup, M., Janzing, D., Siegel, M., Schölkopf, B.
Identification of causal relations in neuroimaging data with latent confounders: An instrumental variable approach
NeuroImage, 125, pages: 825-833, 2016 (article)
ei
Köhler, R.
Advances in computational imaging: Benchmarking Deblurring Algorithms, Deep Neural Inpainting, Depth Estimation from Light Fields
Eberhard Karls Universität Tübingen, Germany, 2016 (phdthesis)
ei
Hohmann, M., Fomina, T., Jayaram, V., Widmann, N., Förster, C., Just, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.
A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis
In Brain-Computer Interfaces: Lab Experiments to Real-World Applications, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)
ei
Daniel, C., Neumann, G., Kroemer, O., Peters, J.
Hierarchical Relative Entropy Policy Search
Journal of Machine Learning Research, 17(93):1-50, 2016 (article)
ei
Kiefel, M.
Tractable Structured Prediction using the Permutohedral Lattice
ETH Zurich, 2016 (phdthesis)
ei
Muandet, K., Sriperumbudur, B., Fukumizu, K., Gretton, A., Schölkopf, B.
Kernel Mean Shrinkage Estimators
Journal of Machine Learning Research, 17(48):1-41, 2016 (article)
ei
Schuler, C. J., Hirsch, M., Harmeling, S., Schölkopf, B.
Learning to Deblur
IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7):1439-1451, IEEE, 2016 (article)
ei
Jayaram, V., Alamgir, M., Altun, Y., Schölkopf, B., Grosse-Wentrup, M.
Transfer Learning in Brain-Computer Interfaces
IEEE Computational Intelligence Magazine, 11(1):20-31, 2016 (article)
ei
Weichwald, S., Grosse-Wentrup, M., Gretton, A.
MERLiN: Mixture Effect Recovery in Linear Networks
IEEE Journal of Selected Topics in Signal Processing, 10(7):1254-1266, 2016 (article)
ei
Peters, J., Bühlmann, P., Meinshausen, N.
Causal inference using invariant prediction: identification and confidence intervals
Journal of the Royal Statistical Society, Series B (Statistical Methodology), 78(5):947-1012, 2016, (with discussion) (article)
ei
Spirtes, P., Zhang, K.
Causal discovery and inference: concepts and recent methodological advances
Applied Informatics, 3(3):1-28, 2016 (article)
ei
Fomina, T., Lohmann, G., Erb, M., Ethofer, T., Schölkopf, B., Grosse-Wentrup, M.
Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS
Journal of Neural Engineering, 13(6):066021, 2016 (article)
ei
Gomez-Rodriguez, M., Song, L., Du, N., Zha, H., Schölkopf, B.
Influence Estimation and Maximization in Continuous-Time Diffusion Networks
ACM Transactions on Information Systems, 34(2):9:1-9:33, 2016 (article)
am
ei
Büchler, D., Calandra, R., Peters, J.
Modeling Variability of Musculoskeletal Systems with Heteroscedastic Gaussian Processes
Workshop on Neurorobotics, Neural Information Processing Systems (NIPS), 2016 (conference)
ei
Foreman-Mackey, D., Morton, T. D., Hogg, D. W., Agol, E., Schölkopf, B.
The population of long-period transiting exoplanets
The Astronomical Journal, 152(6):206, 2016 (article)
ei
Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.
Statistical source separation of rhythmic LFP patterns during sharp wave ripples in the macaque hippocampus
47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)
ei
Raj, A., Olbrich, J., Gärtner, B., Schölkopf, B., Jaggi, M.
Screening Rules for Convex Problems
2016 (unpublished) Submitted
ei
Jäkel, F., Singh, M., Wichmann, F. A., Herzog, M. H.
An overview of quantitative approaches in Gestalt perception
Vision Research, 126, pages: 3-8, 2016 (article)
ei
Schölkopf, B., Janzing, D., Lopez-Paz, D.
Causal and statistical learning
Oberwolfach Reports, 13(3):1896-1899, (Editors: A. Christmann and K. Jetter and S. Smale and D.-X. Zhou), 2016 (conference)
ei
Huang, H., Peloso, G. M., Howrigan, D., Rakitsch, B., Simon-Gabriel, C. J., Goldstein, J. I., Daly, M. J., Borgwardt, K., Neale, B. M.
Bootstrat: Population Informed Bootstrapping for Rare Variant Tests
bioRxiv, 2016, preprint (article)
ei
Rueckert, E., Camernik, J., Peters, J., Babic, J.
Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control
Nature PG: Scientific Reports, 6(Article number: 28455), 2016 (article)
ei
Mooij, J., Peters, J., Janzing, D., Zscheischler, J., Schölkopf, B.
Distinguishing cause from effect using observational data: methods and benchmarks
Journal of Machine Learning Research, 17(32):1-102, 2016 (article)
ei
Babbar, R., Partalas, I., Gaussier, E., Amini, M., Amblard, C.
Learning Taxonomy Adaptation in Large-scale Classification
Journal of Machine Learning Research, 17(98):1-37, 2016 (article)
ei
Janzing, D., Chaves, R., Schölkopf, B.
Algorithmic independence of initial condition and dynamical law in thermodynamics and causal inference
New Journal of Phyiscs, 18(9):093052, 2016 (article)
ei
Besserve, M., Logothetis, N. K.
Hippocampal neural events predict ongoing brain-wide BOLD activity
47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)
ei
Mohr, J., Seyfarth, J., Lueschow, A., Weber, J. E., Wichmann, F. A., Obermayer, K.
BOiS—Berlin Object in Scene Database: Controlled Photographic Images for Visual Search Experiments with Quantified Contextual Priors
Frontiers in Psychology, 2016 (article)
ei
Zhang, K., Li, J., Bareinboim, E., Schölkopf, B., Pearl, J.
Preface to the ACM TIST Special Issue on Causal Discovery and Inference
ACM Transactions on Intelligent Systems and Technologies, 7(2):article no. 17, 2016 (article)
ei
Rueckert, E., Kappel, D., Tanneberg, D., Pecevski, D., Peters, J.
Recurrent Spiking Networks Solve Planning Tasks
Nature PG: Scientific Reports, 6(Article number: 21142), 2016 (article)
ei
Genewein, T, Braun, DA
Bio-inspired feedback-circuit implementation of discrete, free energy optimizing, winner-take-all computations
Biological Cybernetics, 110(2):135–150, June 2016 (article)
ei
Grau-Moya, J, Ortega, PA, Braun, DA
Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context: Experiments and an Information-Theoretic Ambiguity Model
PLoS ONE, 11(4):1-21, April 2016 (article)
pi
Diller, E., Sitti, M.
Untethered Magnetic Micromanipulation
In Micro-and Nanomanipulation Tools, 13, 10, Wiley-VCH Verlag GmbH & Co. KGaA, November 2015 (inbook)
am
ei
Calandra, R., Ivaldi, S., Deisenroth, M., Peters, J.
Learning Torque Control in Presence of Contacts using Tactile Sensing from Robot Skin
In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 690-695, Humanoids, November 2015 (inproceedings)
am
ei
Hoelscher, J., Peters, J., Hermans, T.
Evaluation of Interactive Object Recognition with Tactile Sensing
In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 310-317, Humanoids, November 2015 (inproceedings)
ei
Harmeling, S., Hirsch, M., Sra, S., Schölkopf, B., Schuler, C.
Method and device for recovering a digital image from a sequence of observed digital images
European Patent, No. 11767924.1, November 2015 (patent)
am
ei
Koc, O., Maeda, G., Neumann, G., Peters, J.
Optimizing Robot Striking Movement Primitives with Iterative Learning Control
In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 80-87, Humanoids, November 2015 (inproceedings)
ei
Grimm, Dominik
easyGWAS: An Integrated Computational Framework for Advanced Genome-Wide Association Studies
Eberhard Karls Universität Tübingen, November 2015 (phdthesis)
am
ei
Leischnig, S., Luettgen, S., Kroemer, O., Peters, J.
A Comparison of Contact Distribution Representations for Learning to Predict Object Interactions
In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 616-622, Humanoids, November 2015 (inproceedings)
ei
Sippel, S., Zscheischler, J., Heimann, M., Otto, F. E. L., Peters, J., Mahecha, M. D.
Quantifying changes in climate variability and extremes: Pitfalls and their overcoming
Geophysical Research Letters, 42(22):9990-9998, November 2015 (article)
am
ei
Fritsche, L., Unverzagt, F., Peters, J., Calandra, R.
First-Person Tele-Operation of a Humanoid Robot
In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 997-1002, Humanoids, November 2015 (inproceedings)
am
ei
Lioutikov, R., Neumann, G., Maeda, G., Peters, J.
Probabilistic Segmentation Applied to an Assembly Task
In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 533-540, Humanoids, November 2015 (inproceedings)
ei
Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.
Diversity of sharp wave-ripple LFP signatures reveals differentiated brain-wide dynamical events
Proceedings of the National Academy of Sciences U.S.A, 112(46):E6379-E6387, November 2015 (article)
ei
Sgouritsa, E.
Causal Discovery Beyond Conditional Independences
Eberhard Karls Universität Tübingen, Germany, October 2015 (phdthesis)
am
ei
ics
pn
Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.
Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results
Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS), pages: , , Machine Learning in Planning and Control of Robot Motion Workshop, October 2015 (conference)
ei
Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.
Diversity of sharp wave-ripples in the CA1 of the macaque hippocampus and their brain wide signatures
45th Annual Meeting of the Society for Neuroscience (Neuroscience 2015), October 2015 (poster)
ei
Betz, T., Shapley, R. M., Wichmann, F. A., Maertens, M.
Noise masking of White’s illusion exposes the weakness of current spatial filtering models of lightness perception
Journal of Vision, 15(14):1-17, October 2015 (article)
ei
Tolstikhin, I., Zhivotovskiy, N., Blanchard, G.
Permutational Rademacher Complexity: a New Complexity Measure for Transductive Learning
In Proceedings of the 26th International Conference on Algorithmic Learning Theory, 9355, pages: 209-223, Lecture Notes in Computer Science, (Editors: K. Chaudhuri, C. Gentile and S. Zilles), Springer, ALT, October 2015 (inproceedings)
ei
Besserve, M.
Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism
53rd Annual Allerton Conference on Communication, Control, and Computing, September 2015 (talk)