Header logo is


2018


no image
Incorporation of Terbium into a Microalga Leads to Magnetotactic Swimmers

Santomauro, G., Singh, A., Park, B. W., Mohammadrahimi, M., Erkoc, P., Goering, E., Schütz, G., Sitti, M., Bill, J.

Advanced Biosystems, 2(12):1800039, 2018 (article)

mms pi

[BibTex]

2018


[BibTex]


no image
Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis—implications for brain–computer interfacing

Kellmeyer, P., Grosse-Wentrup, M., Schulze-Bonhage, A., Ziemann, U., Ball, T.

Journal of Neural Engineering, 15(4):041003, IOP Publishing, 2018 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Quantum machine learning: a classical perspective

Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M., Rocchetto, A., Severini, S., Wossnig, L.

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2209):20170551, 2018 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Thermodynamics, kinetics and selectivity of H2 and D2 on zeolite 5A below 77K

Xiong, R., Balderas-Xicohténcatl, R., Zhang, L., Li, P., Yao, Y., Sang, G., Chen, C., Tang, T., Luo, D., Hirscher, M.

{Microporous and Mesoporous Materials}, 264, pages: 22-27, Elsevier, Amsterdam, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Volumetric hydrogen storage capacity in metal-organic frameworks

Balderas-Xicohténcatl, R., Schlichtenmayer, M., Hirscher, M.

{Energy Technology}, 6(3):578-582, Wiley-VCH, Weinheim, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Kernel-based tests for joint independence

Pfister, N., Bühlmann, P., Schölkopf, B., Peters, J.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1):5-31, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test

Babbar, R., Heni, M., Peter, A., Hrabě de Angelis, M., Häring, H., Fritsche, A., Preissl, H., Schölkopf, B., Wagner, R.

Frontiers in Endocrinology, 9, pages: 82, 2018 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Invariant Models for Causal Transfer Learning

Rojas-Carulla, M., Schölkopf, B., Turner, R., Peters, J.

Journal of Machine Learning Research, 19(36):1-34, 2018 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
MOABB: Trustworthy algorithm benchmarking for BCIs

Jayaram, V., Barachant, A.

Journal of Neural Engineering, 15(6):066011, 2018 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
f-Divergence constrained policy improvement

Belousov, B., Peters, J.

Journal of Machine Learning Research, 2018 (article) Submitted

ei

Project Page [BibTex]

Project Page [BibTex]


no image
Phylogenetic convolutional neural networks in metagenomics

Fioravanti*, D., Giarratano*, Y., Maggio*, V., Agostinelli, C., Chierici, M., Jurman, G., Furlanello, C.

BMC Bioinformatics, 19(2):49 pages, 2018, *equal contribution (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Food specific inhibitory control under negative mood in binge-eating disorder: Evidence from a multimethod approach

Leehr, E. J., Schag, K., Dresler, T., Grosse-Wentrup, M., Hautzinger, M., Fallgatter, A. J., Zipfel, S., Giel, K. E., Ehlis, A.

International Journal of Eating Disorders, 51(2):112-123, Wiley Online Library, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Linking imaging to omics utilizing image-guided tissue extraction

Disselhorst, J. A., Krueger, M. A., Ud-Dean, S. M. M., Bezrukov, I., Jarboui, M. A., Trautwein, C., Traube, A., Spindler, C., Cotton, J. M., Leibfritz, D., Pichler, B. J.

Proceedings of the National Academy of Sciences, 115(13):E2980-E2987, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
3D nanoprinted plastic kinoform x-ray optics

Sanli, U. T., Ceylan, H., Bykova, I., Weigand, M., Sitti, M., Schütz, G., Keskinbora, K.

{Advanced Materials}, 30(36), Wiley-VCH, Weinheim, 2018 (article)

mms pi

DOI [BibTex]

DOI [BibTex]


no image
High volumetric hydrogen storage capacity using interpenetrated metal-organic frameworks

Balderas-Xicohténcatl, R., Schmieder, P., Denysenko, D., Volkmer, D., Hirscher, M.

{Energy Technology}, 6(3):510-512, Wiley-VCH, Weinheim, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Discriminative Transfer Learning for General Image Restoration

Xiao, L., Heide, F., Heidrich, W., Schölkopf, B., Hirsch, M.

IEEE Transactions on Image Processing, 27(8):4091-4104, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Dissecting the synapse- and frequency-dependent network mechanisms of in vivo hippocampal sharp wave-ripples

Ramirez-Villegas, J. F., Willeke, K. F., Logothetis, N. K., Besserve, M.

Neuron, 100(5):1224-1240, 2018 (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
In-Hand Object Stabilization by Independent Finger Control

Veiga, F. F., Edin, B. B., Peters, J.

IEEE Transactions on Robotics, 2018 (article) Submitted

ei

Project Page [BibTex]

Project Page [BibTex]


no image
Visualizing and understanding Sum-Product Networks

Vergari, A., Di Mauro, N., Esposito, F.

Machine Learning, 2018 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Non-Equilibrium Relations for Bounded Rational Decision-Making in Changing Environments

Grau-Moya, J, Krüger, M, Braun, DA

Entropy, 20(1:1):1-28, January 2018 (article)

Abstract
Living organisms from single cells to humans need to adapt continuously to respond to changes in their environment. The process of behavioural adaptation can be thought of as improving decision-making performance according to some utility function. Here, we consider an abstract model of organisms as decision-makers with limited information-processing resources that trade off between maximization of utility and computational costs measured by a relative entropy, in a similar fashion to thermodynamic systems undergoing isothermal transformations. Such systems minimize the free energy to reach equilibrium states that balance internal energy and entropic cost. When there is a fast change in the environment, these systems evolve in a non-equilibrium fashion because they are unable to follow the path of equilibrium distributions. Here, we apply concepts from non-equilibrium thermodynamics to characterize decision-makers that adapt to changing environments under the assumption that the temporal evolution of the utility function is externally driven and does not depend on the decision-maker’s action. This allows one to quantify performance loss due to imperfect adaptation in a general manner and, additionally, to find relations for decision-making similar to Crooks’ fluctuation theorem and Jarzynski’s equality. We provide simulations of several exemplary decision and inference problems in the discrete and continuous domains to illustrate the new relations.

ei

DOI [BibTex]

DOI [BibTex]


no image
Thick permalloy films for the imaging of spin texture dynamics in perpendicularly magnetized systems

Finizio, S., Wintz, S., Bracher, D., Kirk, E., Semisalova, A. S., Förster, J., Zeissler, K., We\ssels, T., Weigand, M., Lenz, K., Kleibert, A., Raabe, J.

{Physical Review B}, 98(10), American Physical Society, Woodbury, NY, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Dynamic Janus metasurfaces in the visible spectral region

Yu, P., Li, J., Zhang, S., Jin, Z., Schütz, G., Qiu, C., Hirscher, M., Liu, N.

{Nano Letters}, 18(7):4584-4589, American Chemical Society, Washington, DC, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Review of ultrafast demagnetization after femtosecond laser pulses: A complex interaction of light with quantum matter

Fähnle, M., Haag, M., Illg, C., Müller, B. Y., Weng, W., Tsatsoulis, T., Huang, H., Briones Paz, J. Z., Teeny, N., Zhang, L., Kuhn, T.

{American Journal of Modern Physics}, 7(2):68-74, Science Publishing Group, New York, NY, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct observation of Zhang-Li torque expansion of magnetic droplet solitons

Chung, S., Tuan Le, Q., Ahlberg, M., Awad, A. A., Weigand, M., Bykova, I., Khymyn, R., Dvornik, M., Mazraati, H., Houshang, A., Jiang, S., Nguyen, T. N. A., Goering, E., Schütz, G., Gräfe, J., \AAkerman, J.

{Physical Review Letters}, 120(21), American Physical Society, Woodbury, N.Y., 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Current-induced skyrmion generation through morphological thermal transitions in chiral ferromagnetic heterostructures

Lemesh, I., Litzius, K., Böttcher, M., Bassirian, P., Kerber, N., Heinze, D., Zázvorka, J., Büttner, F., Caretta, L., Mann, M., Weigand, M., Finizio, S., Raabe, J., Im, M., Stoll, H., Schütz, G., Dupé, B., Kläui, M., Beach, G. S. D.

{Advanced Materials}, 30(49), Wiley-VCH, Weinheim, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
3d nanofabrication of high-resolution multilayer Fresnel zone plates

Sanli, U. T., Jiao, C., Baluktsian, M., Grévent, C., Hahn, K., Wang, Y., Srot, V., Richter, G., Bykova, I., Weigand, M., Schütz, G., Keskinbora, K.

{Advanced Science}, 5(9), Wiley-VCH, Weinheim, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Photocatalytic CO2 reduction by Cr-substituted Ba2(In2-xCrx)O5\mbox⋅(H2O)δ(0.04 ≤x ≤0.60)

Yoon, S., Gaul, M., Sharma, S., Son, K., Hagemann, H., Ziegenbalg, D., Schwingenschlogl, U., Widenmeyer, M., Weidenkaff, A.

{Solid State Sciences}, 78, pages: 22-29, Elsevier Masson SAS, Paris, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Correction of axial position uncertainty and systematic detector errors in ptychographic diffraction imaging

Loetgering, L., Rose, M., Keskinbora, K., Baluktsian, M., Dogan, G., Sanli, U., Bykova, I., Weigand, M., Schütz, G., Wilhein, T.

{Optical Engineering}, 57(8), The Society, Redondo Beach, Calif., 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The role of surface oxides on hydrogen sorption kinetics in titanium thin films

Hadjixenophontos, E., Michalek, L., Roussel, M., Hirscher, M., Schmitz, G.

{Applied Surface Science}, 441, pages: 324-330, Elsevier B.V., Amsterdam, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ferromagnetism in nitrogen and fluorine substituted BaTiO3

Yoon, S., Son, K., Ebbinghaus, S. G., Widenmeyer, M., Weidenkaff, A.

{Journal of Alloys and Compounds}, 749, pages: 628-633, Elsevier B.V., Lausanne, Switzerland, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
New concepts for 3d optics in x-ray microscopy

Sanli, U., Ceylan, H., Jiao, C., Baluktsian, M., Grevent, C., Hahn, K., Wang, Y., Srot, V., Richter, G., Bykova, I., Weigand, M., Sitti, M., Schütz, G., Keskinbora, K.

{Microscopy and Microanalysis}, 24(Suppl 2):288-289, Cambridge University Press, New York, NY, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Spin-wave interference in magnetic vortex stacks

Behncke, C., Adolff, C. F., Lenzing, N., Hänze, M., Schulte, B., Weigand, M., Schütz, G., Meier, G.

{Communications Physics}, 1, Nature Publishing Group, London, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
High-throughput synthesis of modified Fresnel zone plate arrays via ion beam lithography

Keskinbora, K., Sanli, U. T., Baluktsian, M., Grévent, C., Weigand, M., Schütz, G.

{Beilstein Journal of Nanotechnology}, 9, pages: 2049-2056, Beilstein-Institut, Frankfurt am Main, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy

Woo, S., Song, K. M., Zhang, X., Ezawa, M., Zhou, Y., Liu, X., Weigand, M., Finizio, S., Raabe, J., Park, M.-C., Lee, K.-Y., Choi, J. W., Min, B.-C., Koo, H. C., Chang, J.

{Nature Electronics}, 1(5):288-296, Springer Nature, London, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic skyrmion as a nonlinear resistive element: A potential building block for reservoir computing

Prychynenko, D., Sitte, M., Litzius, K., Krüger, B., Bourianoff, G., Kläui, M., Sinova, J., Everschor-Sitte, K.

{Physical Review Applied}, 9(1), American Physical Society, College Park, Md. [u.a.], 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Tunable geometrical frustration in magnoic vortex crystals

Behncke, C., Adolff, C. F., Wintz, S., Hänze, M., Schulte, B., Weigand, M., Finizio, S., Raabe, J., Meier, G.

{Scientific Reports}, 8, Nature Publishing Group, London, UK, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]

2008


no image
Modelling contrast discrimination data suggest both the pedestal effect and stochastic resonance to be caused by the same mechanism

Goris, R., Wagemans, J., Wichmann, F.

Journal of Vision, 8(15):1-21, November 2008 (article)

Abstract
Computational models of spatial vision typically make use of a (rectified) linear filter, a nonlinearity and dominant late noise to account for human contrast discrimination data. Linear–nonlinear cascade models predict an improvement in observers' contrast detection performance when low, subthreshold levels of external noise are added (i.e., stochastic resonance). Here, we address the issue whether a single contrast gain-control model of early spatial vision can account for both the pedestal effect, i.e., the improved detectability of a grating in the presence of a low-contrast masking grating, and stochastic resonance. We measured contrast discrimination performance without noise and in both weak and moderate levels of noise. Making use of a full quantitative description of our data with few parameters combined with comprehensive model selection assessments, we show the pedestal effect to be more reduced in the presence of weak noise than in moderate noise. This reduction rules out independent, additive sources of performance improvement and, together with a simulation study, supports the parsimonious explanation that a single mechanism underlies the pedestal effect and stochastic resonance in contrast perception.

ei

Web DOI [BibTex]


no image
gBoost: A Mathematical Programming Approach to Graph Classification and Regression

Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T., Tsuda, K.

Machine Learning, 75(1):69-89, November 2008 (article)

Abstract
Graph mining methods enumerate frequently appearing subgraph patterns, which can be used as features for subsequent classification or regression. However, frequent patterns are not necessarily informative for the given learning problem. We propose a mathematical programming boosting method (gBoost) that progressively collects informative patterns. Compared to AdaBoost, gBoost can build the prediction rule with fewer iterations. To apply the boosting method to graph data, a branch-and-bound pattern search algorithm is developed based on the DFS code tree. The constructed search space is reused in later iterations to minimize the computation time. Our method can learn more efficiently than the simpler method based on frequent substructure mining, because the output labels are used as an extra information source for pruning the search space. Furthermore, by engineering the mathematical program, a wide range of machine learning problems can be solved without modifying the pattern search algorithm.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Machine Learning for Motor Skills in Robotics

Peters, J.

K{\"u}nstliche Intelligenz, 2008(4):41-43, November 2008 (article)

Abstract
Autonomous robots that can adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and the cognitive sciences. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning or human insights would not be able to model all the perceptuomotor tasks of future robots. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator and humanoid robotics and usually scaling was only achieved in precisely pre-structured domains. We have investigated the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernels, Regularization and Differential Equations

Steinke, F., Schölkopf, B.

Pattern Recognition, 41(11):3271-3286, November 2008 (article)

Abstract
Many common machine learning methods such as Support Vector Machines or Gaussian process inference make use of positive definite kernels, reproducing kernel Hilbert spaces, Gaussian processes, and regularization operators. In this work these objects are presented in a general, unifying framework, and interrelations are highlighted. With this in mind we then show how linear stochastic differential equation models can be incorporated naturally into the kernel framework. And vice versa, many kernel machines can be interpreted in terms of differential equations. We focus especially on ordinary differential equations, also known as dynamical systems, and it is shown that standard kernel inference algorithms are equivalent to Kalman filter methods based on such models. In order not to cloud qualitative insights with heavy mathematical machinery, we restrict ourselves to finite domains, implying that differential equations are treated via their corresponding finite difference equations.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Mixture Models for Protein Structure Ensembles

Hirsch, M., Habeck, M.

Bioinformatics, 24(19):2184-2192, October 2008 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Structure of the human voltage-dependent anion channel

Bayrhuber, M., Meins, T., Habeck, M., Becker, S., Giller, K., Villinger, S., Vonrhein, C., Griesinger, C., Zweckstetter, M., Zeth, K.

Proceedings of the National Academy of Sciences of the United States of America, 105(40):15370-15375, October 2008 (article)

Abstract
The voltage-dependent anion channel (VDAC), also known as mitochondrial porin, is the most abundant protein in the mitochondrial outer membrane (MOM). VDAC is the channel known to guide the metabolic flux across the MOM and plays a key role in mitochondrially induced apoptosis. Here, we present the 3D structure of human VDAC1, which was solved conjointly by NMR spectroscopy and x-ray crystallography. Human VDAC1 (hVDAC1) adopts a β-barrel architecture composed of 19 β-strands with an α-helix located horizontally midway within the pore. Bioinformatic analysis indicates that this channel architecture is common to all VDAC proteins and is adopted by the general import pore TOM40 of mammals, which is also located in the MOM.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
MRI-Based Attenuation Correction for PET/MRI: A Novel Approach Combining Pattern Recognition and Atlas Registration

Hofmann, M., Steinke, F., Scheel, V., Charpiat, G., Farquhar, J., Aschoff, P., Brady, M., Schölkopf, B., Pichler, B.

Journal of Nuclear Medicine, 49(11):1875-1883, October 2008 (article)

Abstract
For quantitative PET information, correction of tissue photon attenuation is mandatory. Generally in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating radionuclide source, or from the CT scan in a combined PET/CT scanner. In the case of PET/MRI scanners currently under development, insufficient space for the rotating source exists; the attenuation map can be calculated from the MR image instead. This task is challenging because MR intensities correlate with proton densities and tissue-relaxation properties, rather than with attenuation-related mass density. METHODS: We used a combination of local pattern recognition and atlas registration, which captures global variation of anatomy, to predict pseudo-CT images from a given MR image. These pseudo-CT images were then used for attenuation correction, as the process would be performed in a PET/CT scanner. RESULTS: For human brain scans, we show on a database of 17 MR/CT image pairs that our method reliably enables e stimation of a pseudo-CT image from the MR image alone. On additional datasets of MRI/PET/CT triplets of human brain scans, we compare MRI-based attenuation correction with CT-based correction. Our approach enables PET quantification with a mean error of 3.2% for predefined regions of interest, which we found to be clinically not significant. However, our method is not specific to brain imaging, and we show promising initial results on 1 whole-body animal dataset. CONCLUSION: This method allows reliable MRI-based attenuation correction for human brain scans. Further work is necessary to validate the method for whole-body imaging.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Support Vector Machines and Kernels for Computational Biology

Ben-Hur, A., Ong, C., Sonnenburg, S., Schölkopf, B., Rätsch, G.

PLoS Computational Biology, 4(10: e1000173):1-10, October 2008 (article)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Approximations for Binary Gaussian Process Classification

Nickisch, H., Rasmussen, C.

Journal of Machine Learning Research, 9, pages: 2035-2078, October 2008 (article)

Abstract
We provide a comprehensive overview of many recent algorithms for approximate inference in Gaussian process models for probabilistic binary classification. The relationships between several approaches are elucidated theoretically, and the properties of the different algorithms are corroborated by experimental results. We examine both 1) the quality of the predictive distributions and 2) the suitability of the different marginal likelihood approximations for model selection (selecting hyperparameters) and compare to a gold standard based on MCMC. Interestingly, some methods produce good predictive distributions although their marginal likelihood approximations are poor. Strong conclusions are drawn about the methods: The Expectation Propagation algorithm is almost always the method of choice unless the computational budget is very tight. We also extend existing methods in various ways, and provide unifying code implementing all approaches.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Accurate NMR Structures Through Minimization of an Extended Hybrid Energy

Nilges, M., Bernard, A., Bardiaux, B., Malliavin, T., Habeck, M., Rieping, W.

Structure, 16(9):1305-1312, September 2008 (article)

Abstract
The use of generous distance bounds has been the hallmark of NMR structure determination. However, bounds necessitate the estimation of data quality before the calculation, reduce the information content, introduce human bias, and allow for major errors in the structures. Here, we propose a new rapid structure calculation scheme based on Bayesian analysis. The minimization of an extended energy function, including a new type of distance restraint and a term depending on the data quality, results in an estimation of the data quality in addition to coordinates. This allows for the determination of the optimal weight on the experimental information. The resulting structures are of better quality and closer to the X–ray crystal structure of the same molecule. With the new calculation approach, the analysis of discrepancies from the target distances becomes meaningful. The strategy may be useful in other applications—for example, in homology modeling.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Similarity, Kernels, and the Triangle Inequality

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 52(5):297-303, September 2008 (article)

Abstract
Similarity is used as an explanatory construct throughout psychology and multidimensional scaling (MDS) is the most popular way to assess similarity. In MDS, similarity is intimately connected to the idea of a geometric representation of stimuli in a perceptual space. Whilst connecting similarity and closeness of stimuli in a geometric representation may be intuitively plausible, Tversky and Gati [Tversky, A., Gati, I. (1982). Similarity, separability, and the triangle inequality. Psychological Review, 89(2), 123–154] have reported data which are inconsistent with the usual geometric representations that are based on segmental additivity. We show that similarity measures based on Shepard’s universal law of generalization [Shepard, R. N. (1987). Toward a universal law of generalization for psychologica science. Science, 237(4820), 1317–1323] lead to an inner product representation in a reproducing kernel Hilbert space. In such a space stimuli are represented by their similarity to all other stimuli. This representation, based on Shepard’s law, has a natural metric that does not have additive segments whilst still retaining the intuitive notion of connecting similarity and distance between stimuli. Furthermore, this representation has the psychologically appealing property that the distance between stimuli is bounded.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Comparison of Pattern Recognition Methods in Classifying High-resolution BOLD Signals Obtained at High Magnetic Field in Monkeys

Ku, S., Gretton, A., Macke, J., Logothetis, N.

Magnetic Resonance Imaging, 26(7):1007-1014, September 2008 (article)

Abstract
Pattern recognition methods have shown that functional magnetic resonance imaging (fMRI) data can reveal significant information about brain activity. For example, in the debate of how object categories are represented in the brain, multivariate analysis has been used to provide evidence of a distributed encoding scheme [Science 293:5539 (2001) 2425–2430]. Many follow-up studies have employed different methods to analyze human fMRI data with varying degrees of success [Nature reviews 7:7 (2006) 523–534]. In this study, we compare four popular pattern recognition methods: correlation analysis, support-vector machines (SVM), linear discriminant analysis (LDA) and Gaussian naïve Bayes (GNB), using data collected at high field (7 Tesla) with higher resolution than usual fMRI studies. We investigate prediction performance on single trials and for averages across varying numbers of stimulus presentations. The performance of the various algorithms depends on the nature of the brain activity being categorized: for several tasks, many of the methods work well, whereas for others, no method performs above chance level. An important factor in overall classification performance is careful preprocessing of the data, including dimensionality reduction, voxel selection and outlier elimination.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Single-shot Measurement of the Energy of Product States in a Translation Invariant Spin Chain Can Replace Any Quantum Computation

Janzing, D., Wocjan, P., Zhang, S.

New Journal of Physics, 10(093004):1-18, September 2008 (article)

Abstract
In measurement-based quantum computation, quantum algorithms are implemented via sequences of measurements. We describe a translationally invariant finite-range interaction on a one-dimensional qudit chain and prove that a single-shot measurement of the energy of an appropriate computational basis state with respect to this Hamiltonian provides the output of any quantum circuit. The required measurement accuracy scales inverse polynomially with the size of the simulated quantum circuit. This shows that the implementation of energy measurements on generic qudit chains is as hard as the realization of quantum computation. Here, a ‘measurement‘ is any procedure that samples from the spectral measurement induced by the observable and the state under consideration. As opposed to measurement-based quantum computation, the post-measurement state is irrelevant.

ei

PDF DOI [BibTex]