Header logo is


2003


no image
Kernel Methods and Their Applications to Signal Processing

Bousquet, O., Perez-Cruz, F.

In Proceedings. (ICASSP ‘03), Special Session on Kernel Methods, pages: 860 , ICASSP, 2003 (inproceedings)

Abstract
Recently introduced in Machine Learning, the notion of kernels has drawn a lot of interest as it allows to obtain non-linear algorithms from linear ones in a simple and elegant manner. This, in conjunction with the introduction of new linear classification methods such as the Support Vector Machines has produced significant progress. The successes of such algorithms is now spreading as they are applied to more and more domains. Many Signal Processing problems, by their non-linear and high-dimensional nature may benefit from such techniques. We give an overview of kernel methods and their recent applications.

ei

PDF PostScript [BibTex]

2003


PDF PostScript [BibTex]


no image
Predictive control with Gaussian process models

Kocijan, J., Murray-Smith, R., Rasmussen, CE., Likar, B.

In Proceedings of IEEE Region 8 Eurocon 2003: Computer as a Tool, pages: 352-356, (Editors: Zajc, B. and M. Tkal), Proceedings of IEEE Region 8 Eurocon: Computer as a Tool, 2003 (inproceedings)

Abstract
This paper describes model-based predictive control based on Gaussian processes.Gaussian process models provide a probabilistic non-parametric modelling approach for black-box identification of non-linear dynamic systems. It offers more insight in variance of obtained model response, as well as fewer parameters to determine than other models. The Gaussian processes can highlight areas of the input space where prediction quality is poor, due to the lack of data or its complexity, by indicating the higher variance around the predicted mean. This property is used in predictive control, where optimisation of control signal takes the variance information into account. The predictive control principle is demonstrated on a simulated example of nonlinear system.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Extension of the nu-SVM range for classification

Perez-Cruz, F., Weston, J., Herrmann, D., Schölkopf, B.

In Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Vol. 190, 190, pages: 179-196, NATO Science Series III: Computer and Systems Sciences, (Editors: J Suykens and G Horvath and S Basu and C Micchelli and J Vandewalle), IOS Press, Amsterdam, 2003 (inbook)

ei

[BibTex]

[BibTex]


no image
m-Alternative Forced Choice—Improving the Efficiency of the Method of Constant Stimuli

Jäkel, F.

Biologische Kybernetik, Graduate School for Neural and Behavioural Sciences, Tübingen, 2003 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
New Approaches to Statistical Learning Theory

Bousquet, O.

Annals of the Institute of Statistical Mathematics, 55(2):371-389, 2003 (article)

Abstract
We present new tools from probability theory that can be applied to the analysis of learning algorithms. These tools allow to derive new bounds on the generalization performance of learning algorithms and to propose alternative measures of the complexity of the learning task, which in turn can be used to derive new learning algorithms.

ei

PostScript [BibTex]

PostScript [BibTex]


no image
Distance-based classification with Lipschitz functions

von Luxburg, U., Bousquet, O.

In Learning Theory and Kernel Machines, Proceedings of the 16th Annual Conference on Computational Learning Theory, pages: 314-328, (Editors: Schölkopf, B. and M.K. Warmuth), Learning Theory and Kernel Machines, Proceedings of the 16th Annual Conference on Computational Learning Theory, 2003 (inproceedings)

Abstract
The goal of this article is to develop a framework for large margin classification in metric spaces. We want to find a generalization of linear decision functions for metric spaces and define a corresponding notion of margin such that the decision function separates the training points with a large margin. It will turn out that using Lipschitz functions as decision functions, the inverse of the Lipschitz constant can be interpreted as the size of a margin. In order to construct a clean mathematical setup we isometrically embed the given metric space into a Banach space and the space of Lipschitz functions into its dual space. Our approach leads to a general large margin algorithm for classification in metric spaces. To analyze this algorithm, we first prove a representer theorem. It states that there exists a solution which can be expressed as linear combination of distances to sets of training points. Then we analyze the Rademacher complexity of some Lipschitz function classes. The generality of the Lipschitz approach can be seen from the fact that several well-known algorithms are special cases of the Lipschitz algorithm, among them the support vector machine, the linear programming machine, and the 1-nearest neighbor classifier.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
An Introduction to Support Vector Machines

Schölkopf, B.

In Recent Advances and Trends in Nonparametric Statistics , pages: 3-17, (Editors: MG Akritas and DN Politis), Elsevier, Amsterdam, The Netherlands, 2003 (inbook)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Statistical Learning and Kernel Methods in Bioinformatics

Schölkopf, B., Guyon, I., Weston, J.

In Artificial Intelligence and Heuristic Methods in Bioinformatics, 183, pages: 1-21, 3, (Editors: P Frasconi und R Shamir), IOS Press, Amsterdam, The Netherlands, 2003 (inbook)

ei

[BibTex]

[BibTex]


no image
Interactive Images

Toyama, K., Schölkopf, B.

(MSR-TR-2003-64), Microsoft Research, Cambridge, UK, 2003 (techreport)

Abstract
Interactive Images are a natural extension of three recent developments: digital photography, interactive web pages, and browsable video. An interactive image is a multi-dimensional image, displayed two dimensions at a time (like a standard digital image), but with which a user can interact to browse through the other dimensions. One might consider a standard video sequence viewed with a video player as a simple interactive image with time as the third dimension. Interactive images are a generalization of this idea, in which the third (and greater) dimensions may be focus, exposure, white balance, saturation, and other parameters. Interaction is handled via a variety of modes including those we call ordinal, pixel-indexed, cumulative, and comprehensive. Through exploration of three novel forms of interactive images based on color, exposure, and focus, we will demonstrate the compelling nature of interactive images.

ei

Web [BibTex]

Web [BibTex]


no image
A Short Introduction to Learning with Kernels

Schölkopf, B., Smola, A.

In Proceedings of the Machine Learning Summer School, Lecture Notes in Artificial Intelligence, Vol. 2600, pages: 41-64, LNAI 2600, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)

ei

[BibTex]

[BibTex]


no image
Bayesian Kernel Methods

Smola, A., Schölkopf, B.

In Advanced Lectures on Machine Learning, Machine Learning Summer School 2002, Lecture Notes in Computer Science, Vol. 2600, LNAI 2600, pages: 65-117, 0, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Germany, 2003 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
Stability of ensembles of kernel machines

Elisseeff, A., Pontil, M.

In 190, pages: 111-124, NATO Science Series III: Computer and Systems Science, (Editors: Suykens, J., G. Horvath, S. Basu, C. Micchelli and J. Vandewalle), IOS press, Netherlands, 2003 (inbook)

ei

[BibTex]

[BibTex]


no image
Models of contrast transfer as a function of presentation time and spatial frequency.

Wichmann, F.

2003 (poster)

Abstract
Understanding contrast transduction is essential for understanding spatial vision. Using standard 2AFC contrast discrimination experiments conducted using a carefully calibrated display we previously showed that the shape of the threshold versus (pedestal) contrast (TvC) curve changes with presentation time and the performance level defined as threshold (Wichmann, 1999; Wichmann & Henning, 1999). Additional experiments looked at the change of the TvC curve with spatial frequency (Bird, Henning & Wichmann, 2002), and at how to constrain the parameters of models of contrast processing (Wichmann, 2002). Here I report modelling results both across spatial frequency and presentation time. An extensive model-selection exploration was performed using Bayesian confidence regions for the fitted parameters as well as cross-validation methods. Bird, C.M., G.B. Henning and F.A. Wichmann (2002). Contrast discrimination with sinusoidal gratings of different spatial frequency. Journal of the Optical Society of America A, 19, 1267-1273. Wichmann, F.A. (1999). Some aspects of modelling human spatial vision: contrast discrimination. Unpublished doctoral dissertation, The University of Oxford. Wichmann, F.A. & Henning, G.B. (1999). Implications of the Pedestal Effect for Models of Contrast-Processing and Gain-Control. OSA Annual Meeting Program, 62. Wichmann, F.A. (2002). Modelling Contrast Transfer in Spatial Vision [Abstract]. Journal of Vision, 2, 7a.

ei

[BibTex]


New electro-optic effect: Sum-frequency generation from optically active liquids in the presence of a dc electric field
New electro-optic effect: Sum-frequency generation from optically active liquids in the presence of a dc electric field

Fischer, P., Buckingham, A., Beckwitt, K., Wiersma, D., Wise, F.

PHYSICAL REVIEW LETTERS, 91(17), 2003 (article)

Abstract
We report the observation of sum-frequency signals that depend linearly on an applied electrostatic field and that change sign with the handedness of an optically active solute. This recently predicted chiral electro-optic effect exists in the electric-dipole approximation. The static electric field gives rise to an electric-field-induced sum-frequency signal (an achiral third-order process) that interferes with the chirality-specific sum-frequency at second order. The cross-terms linear in the electrostatic field constitute the effect and may be used to determine the absolute sign of second- and third-order nonlinear-optical susceptibilities in isotropic media.

pf

DOI [BibTex]

DOI [BibTex]


Chiral and achiral contributions to sum-frequency generation from optically active solutions of binaphthol
Chiral and achiral contributions to sum-frequency generation from optically active solutions of binaphthol

Fischer, P., Wise, F., Albrecht, A.

JOURNAL OF PHYSICAL CHEMISTRY A, 107(40):8232-8238, 2003 (article)

Abstract
The nonlinear sum- and difference-frequency generation spectroscopies can be probes of molecular chirality in optically active systems. We present a tensorial analysis of the chirality-specific electric-dipolar sum-frequency-generation susceptibility and the achiral electric-quadrupolar and magnetic-dipolar nonlinearities at second order in isotropic media. The chiral and achiral contributions to the sum-frequency signal from the bulk of optically active solutions of 1,1'-bi-2-naphthol (2,2'-dehydroxy-1,1'-binaphthyl) can be distinguished, and the former dominates. Ab initio computations reveal the dramatic resonance enhancement that the isotropic component of the electric-dipolar three-wave mixing hyperpolarizability experiences. Away from resonance its magnitude rapidly decreases, as-unlike the vector component-it is zero in the static limit. The dispersion of the first hyperpolarizability is computed by a configuration interaction singles sum-over-states approach with explicit regard to the Franck-Condon active vibrational substructure for all resonant electronic states.

pf

DOI [BibTex]

DOI [BibTex]


no image
Evolution of Fault-tolerant Self-replicating Structures

Righetti, L., Shokur, S., Capcarre, M.

In Advances in Artificial Life, pages: 278-288, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2003 (inproceedings)

Abstract
Designed and evolved self-replicating structures in cellular automata have been extensively studied in the past as models of Artificial Life. However, CAs, unlike their biological counterpart, are very brittle: any faulty cell usually leads to the complete destruction of any emerging structures, let alone self-replicating structures. A way to design fault-tolerant structures based on error-correcting-code has been presented recently [1], but it required a cumbersome work to be put into practice. In this paper, we get back to the original inspiration for these works, nature, and propose a way to evolve self-replicating structures, faults here being only an idiosyncracy of the environment.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2001


no image
Regularized principal manifolds

Smola, A., Mika, S., Schölkopf, B., Williamson, R.

Journal of Machine Learning Research, 1, pages: 179-209, June 2001 (article)

Abstract
Many settings of unsupervised learning can be viewed as quantization problems - the minimization of the expected quantization error subject to some restrictions. This allows the use of tools such as regularization from the theory of (supervised) risk minimization for unsupervised learning. This setting turns out to be closely related to principal curves, the generative topographic map, and robust coding. We explore this connection in two ways: (1) we propose an algorithm for finding principal manifolds that can be regularized in a variety of ways; and (2) we derive uniform convergence bounds and hence bounds on the learning rates of the algorithm. In particular, we give bounds on the covering numbers which allows us to obtain nearly optimal learning rates for certain types of regularization operators. Experimental results demonstrate the feasibility of the approach.

ei

PDF [BibTex]

2001


PDF [BibTex]


no image
Variationsverfahren zur Untersuchung von Grundzustandseigenschaften des Ein-Band Hubbard-Modells

Eichhorn, J.

Biologische Kybernetik, Technische Universität Dresden, Dresden/Germany, May 2001 (diplomathesis)

Abstract
Using different modifications of a new variational approach, statical groundstate properties of the one-band Hubbard model such as energy and staggered magnetisation are calculated. By taking into account additional fluctuations, the method ist gradually improved so that a very good description of the energy in one and two dimensions can be achieved. After a detailed discussion of the application in one dimension, extensions for two dimensions are introduced. By use of a modified version of the variational ansatz in particular a description of the quantum phase transition for the magnetisation should be possible.

ei

PostScript [BibTex]

PostScript [BibTex]


no image
The psychometric function: II. Bootstrap-based confidence intervals and sampling

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1314-1329, 2001 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
The psychometric function: I. Fitting, sampling and goodness-of-fit

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1293-1313, 2001 (article)

Abstract
The psychometric function relates an observer'sperformance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. This paper, together with its companion paper (Wichmann & Hill, 2001), describes an integrated approach to (1) fitting psychometric functions, (2) assessing the goodness of fit, and (3) providing confidence intervals for the function'sparameters and other estimates derived from them, for the purposes of hypothesis testing. The present paper deals with the first two topics, describing a constrained maximum-likelihood method of parameter estimation and developing several goodness-of-fit tests. Using Monte Carlo simulations, we deal with two specific difficulties that arise when fitting functions to psychophysical data. First, we note that human observers are prone to stimulus-independent errors (or lapses ). We show that failure to account for this can lead to serious biases in estimates of the psychometric function'sparameters and illustrate how the problem may be overcome. Second, we note that psychophysical data sets are usually rather small by the standards required by most of the commonly applied statistical tests. We demonstrate the potential errors of applying traditional X^2 methods to psychophysical data and advocate use of Monte Carlo resampling techniques that do not rely on asymptotic theory. We have made available the software to implement our methods

ei

PDF [BibTex]

PDF [BibTex]


no image
Unsupervised Segmentation and Classification of Mixtures of Markovian Sources

Seldin, Y., Bejerano, G., Tishby, N.

In The 33rd Symposium on the Interface of Computing Science and Statistics (Interface 2001 - Frontiers in Data Mining and Bioinformatics), pages: 1-15, 33rd Symposium on the Interface of Computing Science and Statistics (Interface - Frontiers in Data Mining and Bioinformatics), 2001 (inproceedings)

Abstract
We describe a novel algorithm for unsupervised segmentation of sequences into alternating Variable Memory Markov sources, first presented in [SBT01]. The algorithm is based on competitive learning between Markov models, when implemented as Prediction Suffix Trees [RST96] using the MDL principle. By applying a model clustering procedure, based on rate distortion theory combined with deterministic annealing, we obtain a hierarchical segmentation of sequences between alternating Markov sources. The method is applied successfully to unsupervised segmentation of multilingual texts into languages where it is able to infer correctly both the number of languages and the language switching points. When applied to protein sequence families (results of the [BSMT01] work), we demonstrate the method‘s ability to identify biologically meaningful sub-sequences within the proteins, which correspond to signatures of important functional sub-units called domains. Our approach to proteins classification (through the obtained signatures) is shown to have both conceptual and practical advantages over the currently used methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Markovian domain fingerprinting: statistical segmentation of protein sequences

Bejerano, G., Seldin, Y., Margalit, H., Tishby, N.

Bioinformatics, 17(10):927-934, 2001 (article)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Unsupervised Sequence Segmentation by a Mixture of Switching Variable Memory Markov Sources

Seldin, Y., Bejerano, G., Tishby, N.

In In the proceeding of the 18th International Conference on Machine Learning (ICML 2001), pages: 513-520, 18th International Conference on Machine Learning (ICML), 2001 (inproceedings)

Abstract
We present a novel information theoretic algorithm for unsupervised segmentation of sequences into alternating Variable Memory Markov sources. The algorithm is based on competitive learning between Markov models, when implemented as Prediction Suffix Trees (Ron et al., 1996) using the MDL principle. By applying a model clustering procedure, based on rate distortion theory combined with deterministic annealing, we obtain a hierarchical segmentation of sequences between alternating Markov sources. The algorithm seems to be self regulated and automatically avoids over segmentation. The method is applied successfully to unsupervised segmentation of multilingual texts into languages where it is able to infer correctly both the number of languages and the language switching points. When applied to protein sequence families, we demonstrate the method‘s ability to identify biologically meaningful sub-sequences within the proteins, which correspond to important functional sub-units called domains.

ei

PDF [BibTex]

PDF [BibTex]


no image
Inference Principles and Model Selection

Buhmann, J., Schölkopf, B.

(01301), Dagstuhl Seminar, 2001 (techreport)

ei

Web [BibTex]

Web [BibTex]


Isotropic second-order nonlinear optical susceptibilities
Isotropic second-order nonlinear optical susceptibilities

Fischer, P., Buckingham, A., Albrecht, A.

PHYSICAL REVIEW A, 64(5), 2001 (article)

Abstract
The second-order nonlinear optical susceptibility, in the electric dipole approximation, is only nonvanishing for materials that are noncentrosymmetric. Should the medium be isotropic, then only a chiral system. such as an optically active liquid, satisfies this symmetry requirement. We derive the quantum-mechanical form of the isotropic component of the sum- and difference-frequency susceptibility and discuss its unusual spectral properties. We show that any coherent second-order nonlinear optical process in a system of randomly oriented molecules requires the medium to be chiral. and the incident frequencies to be different and nonzero. Furthermore, a minimum of two nondegenerate excited molecular states are needed for the isotropic part of the susceptibility to be nonvanishing. The rotationally invariant susceptibility is zero in the static field limit and shows exceptionally sensitive resonance and dephasing effects that are particular to chiral centers.

pf

DOI [BibTex]

DOI [BibTex]


Reply to ``Comment on `Phenomenological damping in optical response tensors'{''}
Reply to “Comment on ‘Phenomenological damping in optical response tensors’”

Buckingham, A., Fischer, P.

PHYSICAL REVIEW A, 63(4), 2001 (article)

Abstract
We show that damping factors must not be incorporated in the perturbation of the ground state by a static electric field. If they are included, as in the theory of Stedman et al. {[}preceding Comment. Phys. Rev. A 63, 047801 (2001)], then there would be an electric dipole in the y direction induced in a hydrogen atom in the M-s = + 1/2 state by a static electric field in the x direction. Such a dipole is excluded by symmetry.

pf

DOI [BibTex]